tìm x biết x+5/6 =-2/3.
tìm x biết 8x-0,4=7,8x+402
thực hiện phép tính 7.9-14/3-17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời
Bài 1:
a)(45-25).(-11)+29.(-3-17)
=20.(-11)+29.(-20)
=20.(-11)+(-29).20
=20.[(-11)+(-29)]
=20.(-30)
=-600
b)(36-6).(-5)+21.(-17-3)
=30.(-5)+21.(-20)
=(-150)+(-420)
=-570
trả lời:
a,(45-25).(-11)+29.(-3-17)
=20.(-11)+29.(-20)
=20.(-11)+(-29).20
=20.[(-11)+(-29).20
=20.(-30)
=-600
học tốt
a; - \(\dfrac{10}{13}\) + \(\dfrac{5}{17}\) - \(\dfrac{3}{13}\) + \(\dfrac{12}{17}\) - \(\dfrac{11}{20}\)
= - (\(\dfrac{10}{13}\) + \(\dfrac{3}{13}\)) + (\(\dfrac{5}{17}\) + \(\dfrac{12}{17}\)) - \(\dfrac{11}{20}\)
= - 1 + 1 - \(\dfrac{11}{20}\)
= 0 - \(\dfrac{11}{20}\)
= - \(\dfrac{11}{20}\)
b; \(\dfrac{3}{4}\) + \(\dfrac{-5}{6}\) - \(\dfrac{11}{-12}\)
= \(\dfrac{9}{12}\) - \(\dfrac{10}{12}\) + \(\dfrac{11}{12}\)
= \(\dfrac{10}{12}\)
= \(\dfrac{5}{6}\)
c; [13.\(\dfrac{4}{9}\) + 2.\(\dfrac{1}{9}\)] - 3.\(\dfrac{4}{9}\)
= [\(\dfrac{52}{9}\) + \(\dfrac{2}{9}\)] - \(\dfrac{4}{3}\)
= \(\dfrac{54}{9}\) - \(\dfrac{4}{3}\)
= \(\dfrac{14}{3}\)
Bài 6:
a)\(\left(-18\right)-\left(-3\right)-12\)
\(=\left(-18\right)+3-12\)
\(=-15-12\)
\(=-27\)
b)\(85.\left(35-27\right)-35.\left(85-27\right)\)
\(=85.35-85.27-35.85+35.27\)
\(=85.\left(35-27-35\right)+35.27\)
\(=85.\left(-27\right)+35.27\)
\(=27.\left(-85+35\right)\)
\(=27.\left(-50\right)\)
\(=-1350\)
c)\(\left(-45\right).69+31.\left(-45\right)\)
\(=\left(-45\right).\left(69+31\right)\)
\(=\left(-45\right).100\)
\(=-4500\)
Bài 7:
a)\(\left(2-x\right)+10=-14\)
\(\Rightarrow2-x=-24\)
\(\Rightarrow x=26\)
b)\(14.\left|x\right|=28\)
\(\Rightarrow\left|x\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
c)\(31-\left(17+x\right)=55\)
\(\Rightarrow17+x=-24\)
\(\Rightarrow x=-41\)
2:
1: =>36x+14x=69+81=150
=>50x=150
=>x=3
2: 3^x=81
=>3^x=3^4
=>x=4
3: 3(2x+1)^2=75
=>(2x+1)^2=25
=>2x+1=5 hoặc 2x+1=-5
=>x=-3 hoặc x=2
1:
1: \(\dfrac{13\cdot17^4+4\cdot17^4}{17^3}-\dfrac{14\cdot3^3-14\cdot3^2}{9}\)
\(=\dfrac{17^4\cdot\left(13+4\right)}{17^3}-\dfrac{14\cdot3^2\left(3-1\right)}{9}\)
\(=17\cdot17-14\cdot2\)
=289-28
=261
2:
\(2^3\cdot5^2-\left[131-\left(23-2^3\right)^2\right]\)
\(=8\cdot25-131+\left(-1\right)^2\)
=69+1
=70
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
Bài 1:
a) \(=\dfrac{8}{15}\left(\dfrac{7}{13}+\dfrac{6}{13}\right)=\dfrac{8}{15}.1=\dfrac{8}{15}\)
b) \(=\dfrac{3.3-7-2.4}{12}=-\dfrac{6}{12}=-\dfrac{1}{2}\)
Bài 2:
\(\dfrac{x}{2,7}=-\dfrac{2}{3,6}\Rightarrow x=\dfrac{\left(-2\right).2,7}{3,6}\Rightarrow x=-\dfrac{3}{2}\)
Bài 3:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=-\dfrac{21}{7}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-3\right).2=-6\\y=\left(-3\right).5=-10\end{matrix}\right.\)
Câu 1:
\(a,=43\cdot\left(27+93\right)+3111+3363=43\cdot120+6474=11634\\ b,=11^2+2^{15}\cdot2^3:2^{17}=121+2=123\\ c,=11^2+7^2-9=121+49-9=151\)
Câu 2:
\(a,\Rightarrow x-\dfrac{3}{2}=5^2=25\\ \Rightarrow x=25+\dfrac{3}{2}=\dfrac{53}{2}\\ b,\Rightarrow7x=30-2=28\\ \Rightarrow x=4\)