Bài 1: (2đ) Tính giá trị của các biểu thức sau:
a) A = 2014^2 + 2012^2 + 2010^2 +…+ 4^2 + 2^2 – (2013^2 +2011^2 + 2009^2 + …+ 3^2 + 1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét nè: ở mẫu số tại các phân số có tử số + mẫu số = 2012. Vì vậy mục tiêu là tạo ra con 2012 ở các phân số của mẫu số. E xử con tử số ở phân số mẫu số sao cho ra con 2012 là được =))
A = 12 - 22 + 32 - 42 + 52 - 62 + 72 - .......- 582 + 592
A = 12 + ( 32 - 22) + ( 52 - 42) + (72 - 62) +....+ ( 592 - 582)
A = 1 + ( 3-2)(2+3) + (5-4)(4+5) + (7-6)(6+7)+....+(59-58)(58+59)
A = 1 + 2 + 3 + 4 + 5 + 6 + 7 + ....+ 58 + 59
A = ( 59 + 1).{ (59 - 1): 1 + 1 } : 2
A = 1770
B = \(\dfrac{2^{2016}-2^{2015}+2^{2014}-2^{2013}+2^{2012}-2^{2011}+2^{2010}-2^{2009}}{2^{2008}}\)
Đặt tử số là A
ta có
A = 22016 - 22015+22014 - 22013 + 22012 - 22011 + 22010- 22009
2 A= 22017- 22016 + 22015- 22014 +22013-22012 + 22011 - 22010
2A + A = 22017 - 22009
3A = 22017 - 22009
A = (22017 - 22009):3
B = A : 8 = (22017- 22009) : 3 : 8
B = (22017 - 22009) : 24
Tổng của dãy số từ 2014 đến 2 là: 1015056
2013 đến 1 là: 1014049
Vậy A là: 1015056 - 1014049 = 1007
Đúng đấy tick mink nka bn!
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+...+\left(\frac{1}{2013}+1\right)+1}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{2014.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}\)\
\(A=\frac{1}{2014}\)
Bạn xem lại đề câu a) cho rõ lại
Câu b) Tại x=2013 thì B=x2013-(x+1)x2012+(x+1)x2011-(x+1)x2010+...-(x+1)x2+(x+1)x-1
= x2013-x2013-x2012+x2012+x2011-x2011-x2010+..-x3 - x2+x2+x-1
= x-1 = 2012
cho 2014=2013+1 thay vào ta có:\(B=x^{2013}-\left(2013+1\right)x^{2012}+\left(2013+1\right)x^{2011}-...-\left(2013+1\right)x^2+\left(2013+1\right)x-1\)
\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-...-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...-x^3-x^2+x^2+x-1\)
\(=x-1=2013-1=2012\)
He he
1.