Tính S:
S = 3 + 3/2 + 3/2^2 + 3/2^3 + ... + 3/2^9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\)
\(S=1+\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\right)\)
đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)
\(A=1-\frac{1}{2^{100}}\)
thay A=\(1-\frac{1}{2^{100}}\)vào S ta có: \(S=1+1-\frac{1}{2^{100}}=2-\frac{1}{2^{100}}\)
a: A=3^2(1^2+2^2+...+10^2)
=9*385
=3465
b: B=2^3(1^3+2^3+...+10^3)
=8*3025
=24200
`9/2xx7/3-4/3xx9/2`
`=9/2xx(7/3-4/3)`
`=9/2xx3/3`
`=9/2xx1`
`=9/2`
Ta có: S = 3+3/2+3/2^2+3/2^3+...+3/2^9
1/2.S = 3/2+3/2^2+3/2^3+3/2^4+...+3/2^10
\(\Rightarrow\) S-1/2.S = 3 - 3/2^10
\(\Rightarrow\) 1/2.S = 3 - 3/2^10
\(\Rightarrow\) S = (3 - 3/2^10) : 1/2
\(\Rightarrow\) S = 6 - 6/2^10
Nếu đúng thì cho mk biết nha