Tính giá trị của biểu thức: N=\(\frac{5x-3y}{2x+y}\) biết \(\frac{x}{y}\)=\(\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x}{y}=\frac{1}{2}\)hay \(\frac{x}{1}=\frac{y}{2}\)
Đặt \(\frac{x}{1}=\frac{y}{2}=k\)=> \(\hept{\begin{cases}x=k\\y=2k\end{cases}}\)
Do đó ta thay x,y vào biểu thức trên ta có :
\(M=\frac{5x-3y}{2x+y}=\frac{5\cdot k-3\cdot2k}{2\cdot k+2k}=\frac{5k-6k}{4k}=\frac{-1k}{4k}=-\frac{1}{4}\)
Vậy \(M=-\frac{1}{4}\)
1.Tính giá trị của biểu thức: A=\(\frac{5x^2+3y^2}{10x^2-3y^2}\left(1\right)biết\frac{x}{3}=\frac{y}{5}suyra:5x=3y;suyra:x=\frac{3y}{5};thayvào\left(1\right)taco:\frac{5\left(\frac{3y}{5}\right)^2+3y^2}{10\left(\frac{3y}{5}\right)^2-3y^2}=\frac{\frac{9y^2}{5}+3y^2}{\frac{18y^2}{5}-3y^2}=\frac{24y^2}{5}\cdot\frac{5}{3y^2}=8\)
2.\(\frac{x}{y}=\frac{7}{10}suyra;\frac{x}{7}=\frac{y}{10}\left(1\right)và\frac{y}{z}=\frac{5}{8}suyra;\frac{y}{5}=\frac{z}{8}suyra;\frac{y}{5}\cdot\frac{1}{2}=\frac{z}{8}\cdot\frac{1}{2}suyra;\frac{y}{10}=\frac{z}{16}\left(2\right)Tù\left(1\right)và\left(2\right)suyra\frac{x}{7}=\frac{y}{10}=\frac{z}{16}và2x+5y-2z=9;suyra:\frac{2x}{14}=\frac{5y}{50}=\frac{2z}{32}ápdụngtínhchấtcủadãytỉsốbằngnhautacó\frac{2x}{14}=\frac{5y}{50}=\frac{2z}{32}=\frac{2x+5y-2z}{14+50-32}=\frac{9}{32}suyra;x=\frac{63}{32};y=\frac{45}{16};z=\frac{9}{2}\)
\(a)\) Ta có :
\(\frac{x}{18}=\frac{y}{9}\)\(\Leftrightarrow\)\(\frac{x}{2}=y\)
\(\Rightarrow\)\(x=2y\)
Thay \(x=2y\) vào \(A=\frac{2x-3y}{2x+3y}\) ta được :
\(A=\frac{2.2y-3y}{2.2y+3y}=\frac{4y-3y}{4y+3y}=\frac{y}{7y}=\frac{1}{7}\)
Vậy ... ( tự kết luận )
Chúc bạn học tốt ~
\(\frac{x}{y}=\frac{1}{2}\Leftrightarrow2x=y\)
\(N=\frac{5x-3y}{2x+y}=\frac{3x}{4x}=\frac{3}{4}\)
.
=-1/2x^2+5x^2y^3-8x^3y^2-5x^2y^3+7x^3y^2-6x^2-5/3y
=(-1/2x^2+6x^2)+(5x^2y^3-5x^2y^3)+(-8x^3y^2-7x^3y^2)+5/3y
=11/2x^2+0-15x^3y^2+5/3y
=11/2x^2-15x^3y^2+5/3y
thay x=-1/2 , y=25 vào giá trị biểu thức M ta đc
11/2.(-1/2)^2-15.(-1/2)^3.25^2+5/3.25=7273/6
vậy tại x=-1/2 , y=25 vào giá trị biểu thức M có giá trị là 7273/6
áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{2}=\frac{y}{3}=\frac{2x-3y}{2.2-3.3}=\frac{3x+4y}{3.2+4.3}\)
\(P=\frac{2x-3y}{3x+4y}=\frac{-5}{18}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\end{cases}}\)
Khi đó \(P=\frac{2x-3y}{3x+4y}=\frac{2\cdot2k-3\cdot3k}{3\cdot2k+4\cdot3k}=\frac{4k-9k}{6k+12k}=\frac{-5k}{18k}=-\frac{5}{18}\)
Đặt \(\frac{x}{3}=\frac{y}{5}=n\Rightarrow x=3n;y=5n\)
\(\Rightarrow A=\frac{5.3^2n^2+3.5^2n^2}{10.3^2n^2-3.5^2n^2}=\frac{n^2\left(45+75\right)}{n^2\left(90-75\right)}=\frac{n^2.120}{n^2.25}=\frac{24}{5}\)
\(\frac{x}{3}=\frac{y}{5}\Rightarrow5x=3y\)
Thay 3y = 5x ; ta được:
\(A=\frac{5x^2+5x^2}{10x^2-5x^2}=\frac{2\times5x^2}{2\times5x^2-5x^2}=\frac{2\times5x^2}{5x^2\times\left(2-1\right)}=\frac{2\times5x^2}{5x^2\times1}=2\)
ta có
\(N=\frac{5x-3y}{2x+y}=\frac{\frac{5x}{y}-\frac{3y}{y}}{\frac{2x}{y}+\frac{y}{y}}=\frac{\frac{5}{2}-3}{\frac{2}{2}+1}=-\frac{1}{4}\)
\(\frac{x}{y}=\frac{1}{2}\Rightarrow\hept{\begin{cases}2x=y\\5x=\frac{5}{2}y\end{cases}}\)
\(N=\frac{5x-3y}{2x+y}=\frac{\frac{5}{2}y-3y}{y+y}=\frac{-\frac{1}{2}y}{2y}=-\frac{1}{4}\)