Cho: x2y2=1
Tính giá trị đa thức
M=2x4+3x2y2+y4+y2
Giúp mik nhá! Mình đang cần gấp!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`M = 2x^4 + 3x^2y^2 + y^4 + y^2`
`M = 2x^4 + 2x^2y^2 + x^2y^2 + y^4 + y^2`
`M = 2x^2( x^2 + y^2 ) + ( x^2 + y^2 )y^2 + y^2`
Thay `x^2+y^2=1` vào `M` ta có `:`
`M = 2x^2 . 1 + y^2 . 1 + y^2`
`M = 2x^2 + 2y^2`
`M = 2( x^2 + y^2 )`
`M = 2.1`
`M=2`
\(M=2x^4+2x^2y^2+x^2y^2+y^4+y^2\)
\(=\left(x^2+y^2\right)\left(2x^2+y^2\right)+y^2\)
\(=2x^2+2y^2=2\)
\(=2x^4+2x^2y^2+x^2y^2+y^4+y^2\\ =2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\\ =2x^2.1+y^2+y^2=2\left(x^2+y^2\right)=2.1=2\)
M=2x4+3x2y2+y4+y2 = (2x4+2x2y2) +(x2y2+y4)+y2
= 2x2(x2 + y2) + y2(x2 + y2) + y2
= 2x2 + 2y2 = 2(x2 + y2) = 2
Vậy M = 2
Ta có: P = 8x2y2z – 2xyz + 5y2z – 5x2y2z + x2y2 – 3x2y2z
= (8x2y2z – 3x2y2z– 5x2y2z) + x2y2– 2xyz + 5y2z
= x2y2– 2xyz + 5y2z.
\(a,P=7xy^3-2x^2y^2-5xy^3-3x^2y^2-5\)
\(\Rightarrow P=2xy^3-5x^2y^2-5\)
b, Thay \(x=-2\) vào biểu thức \(P\) ta được :
\(P=2.\left(-2\right).y^2-5.\left(-2\right)^2.y^2-5\)
\(=-4y^2-y^2-5\)
\(=-5y^2-5\)
Vậy tại \(x=-2\) ta được \(P=-5y^2-5\)
Thay \(y=-1\) vào biểu thức \(P\) ta được
\(P=2x.\left(-1\right)^3-5x^2.\left(-1\right)^2-5\)
\(=-2x-4x^2-5\)
\(=-4x^2-2x-5\)
Vậy tại \(y=-1\) ta được \(P=-4x^2-2x-5\)
a) Ta có: \(M=\left(\dfrac{1}{2}x^2y\right)\cdot\left(\dfrac{2}{3}xy\right)^2\)
\(=\dfrac{1}{2}x^2y\cdot\dfrac{4}{9}x^2y^2\)
\(=\dfrac{2}{9}x^4y^3\)
b) Hệ số là \(\dfrac{2}{9}\)
Phần biến là \(x^4;y^3\)
c) Bậc là 7
d) Thay x=-1 và y=2 vào M, ta được:
\(M=\dfrac{2}{9}\cdot\left(-1\right)^4\cdot2^3=\dfrac{2}{9}\cdot8=\dfrac{16}{9}\)
Ta có: \(x^2y^2=1\Rightarrow\) x = 1 và y = 1
Thay x=1 và y=1 vào đa thức trên ta có: M = \(2.1^4+3.1+1^4+1^2\)
M = 2 + 3 + 1 + 1 = 7