cho tam giác ABC ,B=90 độ d là trung điểm của BC .trên tia đối của DA xát định điiểm E sao cho DA=DE .chứng minh rằng a) CE T BC b) BE//AC c)trên cạnh AC lấy diệm M trên cạnh BElấy điệm N sao cho AM=EN .chúng minh ba điểm M D N thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác ABEC có
D là trung điểm của AE
D là trung điểm của BC
Do đó: ABEC là hình bình hành
SUy ra: AC//BE
a) Xét tam giác ABD và tam giác ACD:
AD chung.
AB = AC (gt).
BD = CD (D là trung điểm của BC).
\(\Rightarrow\Delta ABD=\Delta ACD\left(c-c-c\right).\)
b) Xét tam giác ABC: AB = AC (gt).
\(\Rightarrow\Delta ABC\) cân tại A.
Mà AD là trung tuyến (D là trung điểm của BC).
\(\Rightarrow\) AD là phân giác \(\widehat{BAC}\) (Tính chất tam giác cân).
Xét tam giác MAD và tam giác NAD:
AD chung.
AM = AN (gt).
\(\widehat{MAD}=\widehat{NAD}\) (AD là phân giác \(\widehat{BAC}\)).
\(\Rightarrow\Delta MAD=\Delta NAD\left(c-g-c\right).\)
\(\Rightarrow\) DM = DN (2 cạnh tương ứng).
c) Xét tam giác ADC và tam giác EDB:
DC = DB (D là trung điểm của BC).
AD = ED (gt).
\(\widehat{ADC}=\widehat{EDB}\) (Đối đỉnh).
\(\Rightarrow\Delta ADC=\Delta EDB\left(c-g-c\right).\)
\(\Rightarrow\widehat{CAD}=\widehat{BED}\) (2 góc tương ứng).
\(\Rightarrow\) AC // BE.
Mà \(DK\perp BE\left(gt\right).\)
\(\Rightarrow\) \(DK\perp AC.\left(1\right)\)
Ta có: \(\widehat{AMD}=\widehat{AND}\) \(\left(\Delta MAD=\Delta NAD\right).\)
Mà \(\widehat{AMD}=90^o\left(AM\perp MD\right).\)
\(\Rightarrow\widehat{AND}=90^o.\Rightarrow AC\perp ND.\left(2\right)\)
Từ (1); (2) \(\Rightarrow N;D;K\) thẳng hàng.
Bn tự vẽ hình nhá!!
a) Xét tam giác EAM và tam giác CBM có:
MA = MB (gt)
góc EMA = góc BMC ( 2 góc đối đỉnh)
ME = MC (gt)
=> tam giác EAM = tam giác CBM (c-g-c)
=> EA = BC (2 cạnh tương ứng)
góc EAM = góc CBM (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> EA II BC
b) Xét tam giác ADN và tam giác CBN có:
NB = ND (gt)
góc AND = góc BNC (2 góc đối đỉnh)
NA = NC (gt)
=> tam giác ADN = tam giác CBN (c-g-c)
=> DA = BC (2 cạnh tương ứng)
góc ADN = tam giác CBN (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong => DA II BC
c) Ta có: EA = BC (theo a)
DA = BC (theo b)
=> EA = DA => A là trung điểm của DE
a: Xét tứ giác ABEC có
D là trung điểm của AE
D là trung điểm của BC
Do đó: ABEC là hình bình hành
Suy ra: AB//CE
hay CE⊥BC
b: Ta có: ABEC là hình bình hành
nên BE//AC
c: Xét tứ giác AMEN có
AM//EN
AM=EN
Do đó; AMEN là hình bình hành
Suy ra: AE và MN cắt nhau tại trung điểm của mỗi đường
mà D là trung điểm của AE
nên D là trung điểm của MN
hay M.D.N thẳng hàng