áp dụng BĐT côsi tìm gtln
\(2\sqrt{1-x}+x\left(x\le1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+\dfrac{16}{x-1}\\ =x-1+\dfrac{16}{x-1}+1\)
Áp dụng BĐT Cô-si ta có:
\(x-1+\dfrac{16}{x-1}+1\\
\ge2\sqrt{\left(x-1\right).\dfrac{16}{x-1}}+1\\
=2\sqrt{16}+1\\
=9\)
Dấu "=" xảy ra
\(\Leftrightarrow x-1=\dfrac{16}{x-1}\\ \Leftrightarrow\left(x-1\right)^2=16\\ \Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Đặt \(\sqrt{1+a^2}+\sqrt{1-a^2}=x\Rightarrow\sqrt{2}\le x\le2\)
\(x^2=2+2\sqrt{1-a^4}\Rightarrow\sqrt{1-a^4}=\dfrac{x^2-2}{2}\)
\(\Rightarrow\dfrac{x^2-2}{2}+\left(b+1\right)x+b-4\le0\)
\(\Rightarrow x^2+2\left(b+1\right)x+2b-10\le0\)
\(\Rightarrow x^2+2x-10\le-2b\left(x+1\right)\)
\(\Rightarrow-2b\ge\dfrac{x^2+2x-10}{x+1}\)
\(\Rightarrow-2b\ge\max\limits_{\left[\sqrt{2};2\right]}f\left(x\right)\) với \(f\left(x\right)=\dfrac{x^2+2x-10}{x+1}\)
Xét trên \(\left[\sqrt{2};2\right]\) ta có:
\(f\left(x\right)=\dfrac{3x^2+6x-30}{3\left(x+1\right)}=\dfrac{3x^2+8x-28-2\left(x+1\right)}{3\left(x+1\right)}=\dfrac{\left(3x+14\right)\left(x-2\right)}{3\left(x+1\right)}-\dfrac{2}{3}\le-\dfrac{2}{3}\)
\(\Rightarrow-2b\ge-\dfrac{2}{3}\Rightarrow b\le\dfrac{1}{3}\)
Vậy \(b_{max}=\dfrac{1}{3}\)
\(a,\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}=\dfrac{x^2+x+1+1}{\sqrt{x^2+x+1}}=\sqrt{x^2+x+1}+\dfrac{1}{\sqrt{x^2+x+1}}\left(1\right)\)
Áp dụng BĐT cosi: \(\left(1\right)\ge2\sqrt{\sqrt{x^2+x+1}\cdot\dfrac{1}{\sqrt{x^2+x+1}}}=2\)
Dấu \("="\Leftrightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
\(A=\frac{\sqrt[4]{3}}{2}.\frac{2x}{\sqrt[4]{3}}\sqrt{4-x^4}\le\frac{\sqrt[4]{3}}{4}\left(\frac{4x^2}{\sqrt{3}}+4-x^4\right)=\frac{\sqrt[4]{3}}{4}\left[\frac{16}{3}-\left(x^2-\frac{2\sqrt{3}}{3}\right)^2\right]\le\frac{4\sqrt[4]{3}}{3}\)
\(A_{max}=\frac{4\sqrt[4]{3}}{3}\) khi \(x^2=\frac{2\sqrt{3}}{3}\)
Áp dụng bđt Cô-si:
\(2.1.\sqrt{1-x}+x\le2.\dfrac{1+1-x}{2}+x=2\)
Dấu "=" xảy ra khi và chỉ khi \(\sqrt{1-x}=1\) <=> x = 0