Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Áp dụng BĐT Bunhiakovski
a) \(\sqrt{x-2}+\sqrt{4-x}=\sqrt{\left(\sqrt{x-2}.1+\sqrt{4-x}.1\right)^2}\le\sqrt{\left(1^2+1^2\right)\left(x-2+4-x\right)}=2\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\sqrt{x-2}=\sqrt{4-x}\) \(\Leftrightarrow\) \(x=3\)
b) \(\sqrt{6-x}+\sqrt{x+2}=\sqrt{\left(\sqrt{6-x}.1+\sqrt{x+2}.1\right)^2}\le\sqrt{\left(1^2+1^2\right)\left(6-x+x+2\right)}=4\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\sqrt{6-x}=\sqrt{x+2}\) \(\Leftrightarrow\) \(x=2\)
c) \(\sqrt{x}+\sqrt{2-x}=\sqrt{\left(\sqrt{x}.1+\sqrt{2-x}.1\right)^2}\le\sqrt{\left(1^2+1^2\right)\left(x+2-x\right)}=2\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\sqrt{x}=\sqrt{2-x}\) \(\Leftrightarrow\) \(x=1\)
1.Điều kiện xđ \(x\ge2,x\le4\)
Từ ĐKXĐ ta có
\(x\ge2\Leftrightarrow x-2\ge0\Leftrightarrow\sqrt{x-2}\ge0\left(1\right)\)
\(x\le4\Leftrightarrow4-x\ge0\Leftrightarrow\sqrt{4-x}\ge0\left(2\right)\)
Từ (1),(2) cộng vế theo vế ta có:
\(\sqrt{x-2}+\sqrt{4-x}\ge0+0=0\)
\(BDT\Leftrightarrow\sqrt[3]{\frac{abc}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}+\sqrt[3]{\frac{xyz}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}\le1\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt[3]{\frac{abc}{(a+x)(b+y)(c+z)}}\le\frac{\frac{a}{a+x}+\frac{b}{b+y}+\frac{c}{c+z}}{3}\)
\(\sqrt[3]{\frac{xyz}{(a+x)(b+y)(c+z)}}\le\frac{\frac{x}{a+x}+\frac{y}{b+y}+\frac{z}{c+z}}{3}\)
\(\Rightarrow VT\le\frac{\frac{x+a}{x+a}+\frac{b+y}{b+y}+\frac{c+z}{c+z}}{3}=1\)
Xảy ra khi a=b=c và x=y=z
Áp dụng BĐT AM-Gm:
\(\frac{a}{a+x}+\frac{b}{b+y}+\frac{c}{c+z}\ge3\sqrt[3]{\frac{abc}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}\)
\(\frac{x}{a+x}+\frac{y}{b+y}+\frac{z}{c+z}\ge3\sqrt[3]{\frac{xyz}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}\)
Cộng 2 BĐT trên theo vế:
\(3\ge3.\frac{\sqrt[3]{abc}+\sqrt[3]{xyz}}{\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}\)
\(\Leftrightarrow\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}\ge\sqrt[3]{abc}+\sqrt[3]{xyz}\)(đpcm)
Dấu = xảy ra khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
\(\left|y\right|=\left|1.x+1.\sqrt{1-x^2}\right|\le\sqrt{\left(1^2+1^2\right)\left(x^2+1-x^2\right)}=\sqrt{2}\)