K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì trục OO’ vuông góc với các đáy nên OO′  ⊥  OA; OO′ ⊥ O′B. Vậy các tam giác AOO’ và BO’O vuông tại O và O’.

Theo giả thiết ta có AO  ⊥  O′B mà AO  ⊥  OO′ ⇒ AO  ⊥  (OO′B). Do đó, AO  ⊥  OB nên tam giác AOB vuông tại O. Tương tự, ta chứng minh được tam giác AO’B vuông tại O’. Thể tích hình chóp OABO’ là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hay

Giải sách bài tập Toán 12 | Giải sbt Toán 12

22 tháng 4 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đường tròn tâm O có bán kính bằng  r 2 2  tiếp xúc với AB’ tại H là trung điểm của AB’. Do đó mặt phẳng ( α ) song song với trục OO’ chứa tiếp tuyến của đường tròn đáy, nên ( α ) tiếp xúc với mặt trụ dọc theo một đường sinh, với mặt trụ có trục OO’ và có bán kính đáy bằng  r 2 2

1 tháng 10 2023

 a) Ta thấy OI//AH//BK \(\left(\perp CD\right)\).

 Xét hình thang ABKH (AH//BK), O là trung điểm AB. OI//AH \(\left(I\in HK\right)\) nên I là trung điểm HK.

 b) Hạ \(CP\perp AB\) tại P, \(DQ\perp AB\) tại Q. Khi đó IE//CP//DQ \(\left(\perp AB\right)\)

 Xét hình thang CDQP (CP//DQ) có I là trung điểm CD (hiển nhiên), IE//CP và \(E\in PQ\) nên IE là đường trung bình của hình thang CDQP \(\Rightarrow IE=\dfrac{CP+DQ}{2}\)

 Lại có \(S_{ACB}=\dfrac{1}{2}AB.CP\)\(S_{ADB}=\dfrac{1}{2}.AB.DQ\) 

 \(\Rightarrow S_{ACB}+S_{ADB}=AB.\dfrac{CP+DQ}{2}=AB.IE\) (đpcm)

 c) Ta có \(S_{AHKB}=\dfrac{AH+BK}{2}.HK=OI.HK\) 

 Do dây CD có độ dài không đổi nên khoảng cách từ O đến dây CD là OI cũng không đổi. Như vậy ta chỉ cần tìm vị trí của C để HK lớn nhất. 

 Thật vậy, dựng hình bình hành ABLH. Khi đó vì BK//AH nên \(L\in BK\). Đồng thời ta luôn có \(HK\le HL=AB\), suy ra \(S_{AHKB}\le OI.AB\).

 Dấu "=" xảy ra \(\Leftrightarrow HK=HL\)  \(\Leftrightarrow K\equiv L\) \(\Leftrightarrow\) AHKB là hình bình hành \(\Leftrightarrow\) HK//AB hay CD//AB \(\Rightarrow OI\perp AB\). Vậy C là điểm sao cho \(OI\perp AB\).

 (Nếu muốn tìm cụ thể vị trí của C, thì mình nói luôn nó là điểm C sao cho \(sđ\stackrel\frown{AC}=180^o-2arc\cos\left(\dfrac{CD}{AB}\right)\) nhé. Chứng minh cái này dễ, mình nhường lại cho bạn.)

1 tháng 10 2023

Chỗ vị trí C mình sửa lại là \(sđ\stackrel\frown{AC}=90^o-arc\sin\dfrac{CD}{AB}\) nhé.

31 tháng 5 2021

\(\Delta DAC\sim\Delta DBA\left(g.g\right)\Rightarrow\dfrac{AC}{BA}=\dfrac{DA}{DB}\). (1)

\(\Delta DFC\sim\Delta DBF\left(g.g\right)\Rightarrow\dfrac{FC}{BF}=\dfrac{DF}{DB}\). (2)

Lại có DA = DF (3) (tính chất hai tiếp tuyến cắt nhau)

Từ (1), (2), (3) suy ra \(\dfrac{AC}{BA}=\dfrac{FC}{BF}\Rightarrow AC.BF=FC.BA\).

Áp dụng định lý Ptoleme cho tứ giác ABFC nội tiếp ta có AC . BF + FC . BA = BC . AF

\(2.AC.BF=BC.2FH\Rightarrow AC.BF=BC.FH\Rightarrow\dfrac{AC}{BC}=\dfrac{FH}{FB}\Rightarrow\Delta BCA\sim\Delta BFH\left(c.g.c\right)\Rightarrow\dfrac{BA}{BC}=\dfrac{BH}{BF}\Rightarrow BH.BC=BA.BF=2OC.BF\).

P/s: Đây là tính chất kinh điển của tứ giác điều hòa