Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án C.
Gọi O là tâm của hình vuông ABCD
Khi đó, bán kính đường tròn ngoại tiếp hình vuông ABCD là R = OA
Áp dụng đinh lí Pytago vào tam giác vuông ABC ta có:
B A D C O M E
a)+)tứ giác ABCD có 2 đường chéo bằng nhau AC=BD , vuông góc với nhau và cắt nhau tại trung điểm mỗi đường
=> Tứ giác ABCD là hình vuông
+) Tam giác AOB vuông tại O, có OA=OB=R, theo Pytago thuận:
=> \(AB^2=OA^2+OB^2=2R^2\)
Khi đó diện tích tứ giác ABCD:
\(S=AB^2=2R^2\)
b) +) góc AEC=90' ( góc nội tiếp chắn nửa đường tròn)
Ta có: góc MOC + góc MEC =180=> OMEC nội tiếp đường tròn đường kính MC
Theo Pytago thuận ta có:
\(MC^2=OM^2+OC^2=\frac{R^2}{4}+R^2=\frac{5R^2}{4}\Rightarrow MC=\frac{R\sqrt{5}}{2}\)
\(\Rightarrow S=\frac{MC^2}{4}.\pi=\frac{5R^2}{16}.\pi\)
c) MA=MC (M thuộc trung trực AC)=> tam giác MAC cân tại M=> MCA=MAC
Tương tự, ta có OAE=OEA
=> OEA=MCA
=> \(\Delta OAE~\Delta MAC\left(g.g\right)\)
\(\Rightarrow\frac{OA}{MA}=\frac{AE}{AC}\Leftrightarrow MA.AE=OA.AC=2R^2\)
a: Xét (O) có
AB,AC là các tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc với BC tại H
Xét ΔOBA vuông tại B có BH là đường cao
nên OH*OA=OB^2=R^2
b: Xét (O) co
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
=>CD//OA
a)tam giac AMB vuông (t/c trung tuyen thuoc canh huyen)
b)de thay OK la trung truc cua MB
=>KM=KB
tgMOK=tgBOK(ccc)
=>gocOMK=OBK=90
c)tam giac MKB can co goc MBK=60=>MKB deu
d)phan nay de tu lam nhe
c)taxét tam giác aen và tam giác KBH có E=H =90 góc EBA chung => hai tam giác đồng dạng => EB.KB=BH.AB mà BH.AB=BC^2 => EB.KB=BC^2 mặt khác tan có BH.HA=CH^2 vậy biểu thức sẽ là BC^2-CH^2=HB^2
d)ta có vì tứ giác AEKH NỘI TIẾP đường tròn đường kính EK => tam giácEKH nội tiếp đưowngf tròn bán kính AK vậy để r lớp nhất => AK lớ nhất, vì tam giác AKH là tam giác vuông => góc AKH<90 vậy AKH là góc tù => AK<AC vậy AK lớn nhất khi bằng AK => E trùng với C thì AK bằng AC => để đường tròn ngoại tiếp tam giác EKH có bán kính lớn nhất thì E trùng với C