K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2022

\(\sqrt{x}+\dfrac{1}{2\sqrt{x}}=3\)

\(\Leftrightarrow\dfrac{2\sqrt{x}\sqrt{x}}{2\sqrt{x}}+\dfrac{1}{2\sqrt{x}}=\dfrac{3.2\sqrt{x}}{2\sqrt{x}}\)

\(\Leftrightarrow\dfrac{2x}{2\sqrt{x}}-\dfrac{6\sqrt{x}}{2\sqrt{x}}+\dfrac{1}{2\sqrt{x}}=0\)

\(\Leftrightarrow2x-6\sqrt{x}+1=0\)

\(\Leftrightarrow...\)

NV
19 tháng 1 2022

\(\Rightarrow2x+1=6\sqrt{x}\)

\(\Rightarrow2x-6\sqrt{x}+1=0\)

\(\Rightarrow\sqrt{x}=\dfrac{3\pm\sqrt{7}}{2}\)

\(\Rightarrow x=\left(\dfrac{3\pm\sqrt{7}}{2}\right)^2=\dfrac{8\pm3\sqrt{7}}{2}\)

20 tháng 11 2018

\(\dfrac{2}{\sqrt{x+1}+\sqrt{3-x}}=1+\sqrt{3+2x-x^2}\) ( đk \(-1\le x\le3\) )

đặt \(t=\sqrt{x+1}+\sqrt{3-x}\)

\(\Leftrightarrow t^2=4+2\sqrt{\left(x+1\right)\left(3-x\right)}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(3-x\right)}=\dfrac{t^2-4}{2}\)

pt \(\Leftrightarrow\dfrac{2}{t}=1+\dfrac{t^2-4}{2}\)

\(\Leftrightarrow4=2t+t^3-4t\)

\(\Leftrightarrow t^3-2t-4=0\)

\(\Leftrightarrow t=2\)

\(\Leftrightarrow\text{​​}\sqrt{\left(x+1\right)\left(3-x\right)}=\dfrac{t^2-4}{2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

20 tháng 11 2018

Cái này dùng lượng liên hợp nhưng không biết thêm bớt sao cho vừa

NV
19 tháng 1 2022

ĐKXĐ: \(x^2-4x+1\ge0\)

\(2x+2+2\sqrt{x^2-4x+1}=6\sqrt{x}\)

\(\Leftrightarrow2x+2-5\sqrt{x}+2\sqrt{x^2-4x+1}-\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{4x^2-17x+4}{2x+2+5\sqrt{x}}+\dfrac{4x^2-17x+4}{2\sqrt{x^2-4x+1}+\sqrt{x}}=0\)

\(\Leftrightarrow\left(4x^2-17x+4\right)\left(\dfrac{1}{2x+2+5\sqrt{x}}+\dfrac{1}{2\sqrt{x^2-4x+1}+\sqrt{x}}\right)=0\)

\(\Leftrightarrow4x^2-17x+4=0\)

\(\Leftrightarrow...\)

3 tháng 11 2021

ĐKXĐ: \(x>0\)

Áp dụng BĐT Cauchy cho 2 số dương:

\(\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{1}{\sqrt{x}}}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\left(\sqrt{x}\right)^2=1\Leftrightarrow x=1\left(tm\right)\)

3 tháng 11 2018

Ta có :

\(\dfrac{1}{\sqrt{x+1}+\sqrt{x+2}}=\dfrac{\sqrt{x+1}-\sqrt{x+2}}{\left(\sqrt{x+1}+\sqrt{x+2}\right)\left(\sqrt{x+1}-\sqrt{x+2}\right)}=\dfrac{\sqrt{x+1}-\sqrt{x+2}}{-1}=-\sqrt{x+1}+\sqrt{x+2}\)

Tương tự :

\(\dfrac{1}{\sqrt{x+2}+\sqrt{x+3}}=-\sqrt{x+2}+\sqrt{x+3}\)

\(\dfrac{1}{\sqrt{x+3}+\sqrt{x+4}}=-\sqrt{x+3}+\sqrt{x+4}\)

....

\(\dfrac{1}{\sqrt{x+2019}+\sqrt{x+2010}}=-\sqrt{x+2019}+\sqrt{x+2010}\)

Từ những ý trên , pt trở thành :

\(-\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+2}+\sqrt{x+3}-\sqrt{x+3}+\sqrt{x+4}-.....-\sqrt{x+2019}+\sqrt{x+2020}=11\)

\(\Leftrightarrow\sqrt{x+2020}-\sqrt{x+1}=11\)

\(\Leftrightarrow x+2020-2\sqrt{\left(x+2020\right)\left(x+1\right)}+x+1=121\)

\(\Leftrightarrow2x+1900=2\sqrt{\left(x+1\right)\left(x+2020\right)}\)

\(\Leftrightarrow x+950=\sqrt{\left(x+1\right)\left(x+2020\right)}\)

\(\Leftrightarrow x^2+1900x+902500=x^2+2021x+2020\)

\(\Leftrightarrow121x-900480=0\)

\(\Leftrightarrow x=\dfrac{900480}{121}\)

12 tháng 3 2023

\(\dfrac{2\sqrt{x}}{\sqrt{x}-2}.\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)^2}\)

\(=\dfrac{2x+4\sqrt{x}}{x-4\sqrt{x}+4}\)

12 tháng 3 2023

\(\dfrac{2\sqrt{x}}{\sqrt{x}-2}.\dfrac{\sqrt{x}+2}{\sqrt{x}-2}=\dfrac{2\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)^2}\) (\(đk:x\ge0;x\ne\sqrt{2}\))

\(=\dfrac{2x+4\sqrt{x}}{x-4\sqrt{x}+4}\)

\(\)

26 tháng 7 2018

\(A=3\sqrt{8}-\sqrt{50}-\sqrt{\sqrt{2}-1}\)

\(\Leftrightarrow6\sqrt{2}-5\sqrt{2}-\sqrt{\sqrt{2}-1}\)

\(\Leftrightarrow\sqrt{2}-\sqrt{\sqrt{2}-1}\)

\(B=2.\dfrac{2}{x-1}.\sqrt{\dfrac{x^2-2x+1}{4x^2}}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{x^2-2x+1}}{2x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{\left(x-1\right)^2}}{x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{x-1}{x}\)

\(\Leftrightarrow\)\(2.\dfrac{1}{x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x}\)

28 tháng 9 2021

1) \(\Leftrightarrow\sqrt{\left(x+5\right)^2}=4\)

\(\Leftrightarrow\left|x+5\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=4\\x+5=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-9\end{matrix}\right.\)

2) \(ĐK:x\ge2\)

\(\Leftrightarrow\sqrt{x-2}=2\)

\(\Leftrightarrow x-2=4\Leftrightarrow x=6\left(tm\right)\)

3) \(\Leftrightarrow\left(x^2-x+4\right)-\sqrt{x^2-x+4}+\dfrac{1}{4}=\dfrac{9}{4}\)

\(\Leftrightarrow\left(\sqrt{x^2-x+4}-\dfrac{1}{2}\right)^2=\dfrac{9}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+4}-\dfrac{1}{2}=\dfrac{3}{2}\\\sqrt{x^2-x+4}-\dfrac{1}{2}=-\dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+4}=2\\\sqrt{x^2-x+4}=-1\left(VLý\right)\end{matrix}\right.\)

\(\Leftrightarrow x^2-x+4=4\Leftrightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

4) \(ĐK:x\ge0\)

\(\Leftrightarrow3\sqrt{x}-3=\sqrt{x}+2\)

\(\Leftrightarrow\sqrt{x}=\dfrac{5}{2}\Leftrightarrow x=\dfrac{25}{4}\left(tm\right)\)