K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2018

Ta có :

\(\dfrac{1}{\sqrt{x+1}+\sqrt{x+2}}=\dfrac{\sqrt{x+1}-\sqrt{x+2}}{\left(\sqrt{x+1}+\sqrt{x+2}\right)\left(\sqrt{x+1}-\sqrt{x+2}\right)}=\dfrac{\sqrt{x+1}-\sqrt{x+2}}{-1}=-\sqrt{x+1}+\sqrt{x+2}\)

Tương tự :

\(\dfrac{1}{\sqrt{x+2}+\sqrt{x+3}}=-\sqrt{x+2}+\sqrt{x+3}\)

\(\dfrac{1}{\sqrt{x+3}+\sqrt{x+4}}=-\sqrt{x+3}+\sqrt{x+4}\)

....

\(\dfrac{1}{\sqrt{x+2019}+\sqrt{x+2010}}=-\sqrt{x+2019}+\sqrt{x+2010}\)

Từ những ý trên , pt trở thành :

\(-\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+2}+\sqrt{x+3}-\sqrt{x+3}+\sqrt{x+4}-.....-\sqrt{x+2019}+\sqrt{x+2020}=11\)

\(\Leftrightarrow\sqrt{x+2020}-\sqrt{x+1}=11\)

\(\Leftrightarrow x+2020-2\sqrt{\left(x+2020\right)\left(x+1\right)}+x+1=121\)

\(\Leftrightarrow2x+1900=2\sqrt{\left(x+1\right)\left(x+2020\right)}\)

\(\Leftrightarrow x+950=\sqrt{\left(x+1\right)\left(x+2020\right)}\)

\(\Leftrightarrow x^2+1900x+902500=x^2+2021x+2020\)

\(\Leftrightarrow121x-900480=0\)

\(\Leftrightarrow x=\dfrac{900480}{121}\)

6 tháng 7 2017

2. \(\dfrac{\sqrt{x^2}-16}{\sqrt{x-3}}+\sqrt{x+3}=\dfrac{7}{\sqrt{x-3}}\) (2)

\(\Leftrightarrow\dfrac{\sqrt{x^2}-16}{\sqrt{x-3}}+\sqrt{x+3}-\dfrac{7}{\sqrt{x-3}}=0\)

\(\Leftrightarrow\dfrac{\sqrt{x^2}-16+\sqrt{\left(x-3\right)\left(x+3\right)}-7}{\sqrt{x-3}}=0\)

\(\Leftrightarrow\sqrt{x^2}-16+\sqrt{\left(x-3\right)\left(x+3\right)}-7=0\)

\(\Leftrightarrow\left|x\right|-16+\sqrt{x^2-9}-7=0\)

\(\Leftrightarrow\left|x\right|-23+\sqrt{x^2-9}=0\)

\(\Leftrightarrow\sqrt{x^2-9}=-\left|x\right|+23\)

\(\Leftrightarrow x^2-9=-\left(-\left|x\right|+23\right)^2\)

\(\Leftrightarrow x^2-9=-\left(-\left|x\right|\right)^2-46\cdot\left|x\right|+529\)

\(\Leftrightarrow x^2-9=\left|x\right|^2-46+\left|x\right|+529\)

\(\Leftrightarrow x^2-9=x^2-46\cdot\left|x\right|+529\)

\(\Leftrightarrow-9=-46\cdot\left|x\right|+529\)

\(\Leftrightarrow46\cdot\left|x\right|=529+9\)

\(\Leftrightarrow49\cdot\left|x\right|=538\)

\(\Leftrightarrow\left|x\right|=\dfrac{269}{23}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{269}{23}\\x=-\dfrac{269}{23}\end{matrix}\right.\)

Sau khi dùng phép thử ta nhận thấy \(x\ne-\dfrac{269}{23}\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{269}{23}\right\}\)

3. sửa đề: \(\sqrt{14-x}=\sqrt{x-4}\sqrt{x-1}\) (3)

\(\Leftrightarrow\sqrt{14-x}=\sqrt{\left(x-4\right)\left(x-1\right)}\)

\(\Leftrightarrow\sqrt{14-x}=\sqrt{x^2-x-4x+4}\)

\(\Leftrightarrow\sqrt{14-x}=\sqrt{x^2-5x+4}\)

\(\Leftrightarrow14-x=x^2-5x+4\)

\(\Leftrightarrow14-x-x^2+5x-4=0\)

\(\Leftrightarrow10+4x-x^2=0\)

\(\Leftrightarrow-x^2+4x+10=0\)

\(\Leftrightarrow x^2-4x-10=0\)

\(\Leftrightarrow x=\dfrac{-\left(-4\right)\pm\sqrt{\left(-4\right)^2-4\cdot1\cdot\left(-10\right)}}{2\cdot1}\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{16+40}}{2}\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{56}}{2}\)

\(\Leftrightarrow x=\dfrac{4\pm2\sqrt{14}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4-2\sqrt{14}}{2}\\x=\dfrac{4+2\sqrt{14}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{14}\\x=2-\sqrt{14}\end{matrix}\right.\)

sau khi dùng phép thử ta nhận thấy \(x\ne2-\sqrt{14}\)

Vậy tập nghiệm phương trình (3) là \(S=\left\{2+\sqrt{14}\right\}\)

6 tháng 7 2017

3. \(\sqrt{14-x}-\sqrt{x-4}=\sqrt{x-1}\)

À nhầm sorrry quên để ý cái căn nhỏ :))

3 tháng 8 2018

điều kiện : \(x\ge1\)

ta có : \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}\right)^2+2\sqrt{x-1}+1}+\sqrt{\left(\sqrt{x-1}\right)^2-2\sqrt{x-1}+1}=\dfrac{x+3}{2}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=\dfrac{x+3}{2}\)

\(\Leftrightarrow\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|=\dfrac{x+3}{2}\) (1)

th1: \(\sqrt{x-1}-1\ge0\Leftrightarrow x\ge2\)

ta có : \(2\sqrt{x-1}=\dfrac{x+3}{2}\Leftrightarrow4\sqrt{x-1}=x+3\)

\(\Leftrightarrow16\left(x-1\right)=x^2+6x+9\Leftrightarrow x^2-10x+25=0\) \(\Leftrightarrow x=5\left(tmđk\right)\)

th1: \(\sqrt{x-1}-1< 0\Leftrightarrow1\le x< 2\)

ta có : \(2=\dfrac{x+3}{2}\Leftrightarrow4=x+3\Leftrightarrow x=1\left(tmđk\right)\)

vậy \(x=5;x=1\)

26 tháng 7 2018

\(A=3\sqrt{8}-\sqrt{50}-\sqrt{\sqrt{2}-1}\)

\(\Leftrightarrow6\sqrt{2}-5\sqrt{2}-\sqrt{\sqrt{2}-1}\)

\(\Leftrightarrow\sqrt{2}-\sqrt{\sqrt{2}-1}\)

\(B=2.\dfrac{2}{x-1}.\sqrt{\dfrac{x^2-2x+1}{4x^2}}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{x^2-2x+1}}{2x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{\left(x-1\right)^2}}{x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{x-1}{x}\)

\(\Leftrightarrow\)\(2.\dfrac{1}{x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x}\)

24 tháng 7 2017

a) ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\0>x\ge-1\end{matrix}\right.\). Để pt có nghiệm => x>0=> \(x\ge1\) pt<=> \(x-\sqrt{1-\dfrac{1}{x}}=\sqrt{x-\dfrac{1}{x}}.Bìnhphương2vetaco\left(x-\sqrt{1-\dfrac{1}{x}}\right)^2=x-\dfrac{1}{x}\)\(\Leftrightarrow x^2+1-\dfrac{1}{x}-2x\sqrt{1-\dfrac{1}{x}}=x-\dfrac{1}{x}\Leftrightarrow x^2-x+1=2\sqrt{x^2-x}\Leftrightarrow\left(\sqrt{x^2-x}-1\right)^2=0\Leftrightarrow x^2-x=1\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{5}{4}\)

24 tháng 7 2017

b) ĐKXĐ\(0\le x\le1\) pt \(\Leftrightarrow\left(\sqrt{x^2+x}+\sqrt{x-x^2}\right)^2=\left(x+1\right)^2\Leftrightarrow2x+2x.\sqrt{1-x^2}=x^2+2x+1\Leftrightarrow x^2-2x\sqrt{1-x^2}+1-x^2+x^2=0\Leftrightarrow\left(x-\sqrt{1-x^2}\right)^2+x^2=0\)

5 tháng 7 2018

\(\dfrac{3\sqrt{x}}{2}-\dfrac{2\sqrt{x}-7}{3}=\sqrt{x}-1\)

\(\Leftrightarrow9\sqrt{x}-15-4\sqrt{x}+14=6\sqrt{x}-6\left(x\ge0\right)\)

\(\Leftrightarrow5\sqrt{x}-1=6\sqrt{x}-6\)

\(\Leftrightarrow x=25\left(TM\right)\)

KL.....