K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2016

 A= 2n-1/3n-4 nguyên 
<=> 2n-1 chia hết cho 3n-4 => 3(2n-1) chia hết cho 3n-4 <=> 6n-3 chia hết cho 3n-4 (1) 
mà : 3n-4 chia hết cho 3n-4 => 2(3n-4) chia hết cho 3n-4 <=> 6n-8 chia hết cho 3n-4 (2) 
từ 1 và 2 => 6n-3 -6n + 8 chia hết cho 3n-4 
<=> 5 chia hết cho 3n-4 
<=> 3n-4 thuộc ước của 5 = { 1,-1,5,-5} 
lập bảng: 
đoạn này bạn biết làm k???? 
5sao nhé!!!

19 tháng 4 2016

nếu lun đi có 4 trường hợp thui

27 tháng 11 2017

Đáp án cần chọn là: B

Với n ≠ 1, ta có:

n n − 1 + 2 n + 4 n − 1 = n + 2 n + 4 n − 1 = 3 n + 4 n − 1 = ( 3 n − 3 ) + 7 n − 1 = 3 ( n − 1 ) + 7 n − 1 = 3 ( n − 1 ) n − 1 + 7 n − 1 = 3 + 7 n − 1    

Yêu cầu bài toán thỏa mãn nếu  7 n − 1 ∈ Z  hay n − 1∈U(7) = {±1;±7}

Ta có bảng:

Vậy n∈{2;0;−6;8}.

27 tháng 4 2023

Làm rõ chi tiết chút nha mọi người help em 1 mạng đi 

a: Để A nguyên thì \(2n+1\inƯ\left(10\right)\)

mà n nguyên

nên \(2n+1\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{0;-1;2;-3\right\}\)

b: B nguyên thì 3n+5-5 chia hết cho 3n+5

=>\(3n+5\inƯ\left(-5\right)\)

mà n nguyên

nên \(3n+5\in\left\{-1;5\right\}\)

=>n=-2 hoặc n=0

c: Để C nguyên thì 4n-6+16 chia hết cho 2n-3

=>\(2n-3\in\left\{1;-1\right\}\)

=>\(n\in\left\{2;1\right\}\)

22 tháng 1 2024

a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2

=> (n - 2) + 3 ⋮ n - 2

 Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2

=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}

 => n ∈ {-1;1;3;5}

b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1

=> (4n - 2) + 7 ⋮ 2n - 1

=> 2(2n - 1) + 7 ⋮ 2n - 1

 Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1

=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}

=> n ∈ {-3;0;1;4}

26 tháng 5 2015

A=\(\frac{4n+1}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2+\frac{-5}{2n+3}\)

Để A nguyên thì \(\frac{-5}{2n+3}\) phải nguyên

=> \(2n+3\inƯ\left(-5\right)=\left\{1;-1;5;-5\right\}\)

=> \(n\in\left\{-1;-2;1;-4\right\}\)

25 tháng 4 2022
25 tháng 4 2022

\(\text{#}\)\(m.ánh\)

\(a=\dfrac{4n+1}{2n-1}\)\(\text{∈ Z ⇔ 4 n + 1 ⋮ 2 n − 1 ( n ∈ Z )}\)

Vì \(2 n − 1 ⋮ 2 n − 1\)

\(⇒ 2 . ( 2 n − 1 ) ⋮ 2 n − 1\)

\(⇒ 4 n − 2 ⋮ 2 n − 1\)

\(⇒ 4 n + 1 − 4 n − 2 ⋮ 2 n − 1\)

\(⇒ 3 ⋮ 2 n − 1 hay 2 n − 1 ∈ Ư ( 3 ) = ( 1 ; 3 ; − 1 ; − 3 )\)

Lập bảng gt : 

\(2n-1\)\(1\)\(3\)\(-1\)\(-3\)
\(n\)\(1\)\(2\)\(0\)\(-1\)
 \(TMDK \)\(TMDK \)\(TMDK \)\(TMDK \)

 

Vậy \(n\text{∈}\left\{1;2;0;-1\right\}\)

DD
21 tháng 7 2021

\(\frac{4n-1}{3-2n}=\frac{4n-6+5}{3-2n}=\frac{2\left(2n-3\right)+5}{3-2n}=-2+\frac{5}{3-2n}\inℤ\)

mà \(n\inℤ\)nên \(3-2n\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)

\(\Leftrightarrow n\in\left\{4,2,1,-1\right\}\).

9 tháng 6 2015

Để A là số nguyên thì

4n+1\(^._:\)2n+3

=>4n+6-5\(^._:\)2n+3

Vì 4n+6\(^._:\)2n+3

=>5\(^._:\)2n+3

=>2n+3\(\in\)Ư(5)={1;-1;5;-5}

Ta có bảng sau:

2n+3n
1-1
-1-2
51
-5-4

KL: n\(\in\){-1;-2;1;-4}

 

a: Để A là số tự nhiên thì \(\left\{{}\begin{matrix}3n+5⋮2n+1\\n\ge-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+3+7⋮2n+1\\n\ge-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+1\in\left\{1;-1;7;-7\right\}\\n\ge-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow n\in\left\{0;3\right\}\)

b: Để B là số nguyên âm thì \(\left\{{}\begin{matrix}4n+1\inƯ\left(10\right)\\n< =-\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4n+1\in\left\{1;-1;5;-5\right\}\\n< =-\dfrac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow n=-\dfrac{3}{2}\)

8 tháng 2 2022

Câu a thiếu TH n = -4 nữa á bạn