K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2016

Bài 1:

\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)

\(\ge x-3+0+7-x=4\)

Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)

Vậy MinA=4 khi x=5

Bài 2:

\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)

\(\ge x-1+x-2+3-x+5-x=5\)

Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)

 

22 tháng 4 2016

đề thiếu

22 tháng 4 2016

đề đúng mà

10 tháng 4 2017

Lập bảng xét dấu rồi làm nha bạn.

10 tháng 4 2017

mk mới lớp 7 k giải đc toán 8 

23 tháng 5 2021

2450 nhé

23 tháng 5 2021

còn cái nịtッ

10 tháng 9 2017

ta có \(P=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|=\left|x+3\right|+\left|5-x\right|+\left|x-2\right|\)

Áp dụng tính chât dấu giá trị tuyệt đối ta có 

\(\left|x+3\right|+\left|5-x\right|\ge\left|x+3+5-x\right|=8\)

mà \(\left|x-2\right|\ge0\)

\(\Rightarrow P\ge8\)

dấu = xảy ra <=>\(\hept{\begin{cases}\left(x+3\right)\left(5-x\right)\ge0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(x-5\right)\ge0\\x=2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}5\ge x\ge-3\\x=2\end{cases}}\)

<=> x=2

vậy Pmin =8 <=> x=2

28 tháng 5 2015

a)t có /x-2/ lớn hơn hoặc bằng 0

/x-4/lớn hơn hoặc bằng 0

suy ra /x-2/+/x-4/=A lớn hơn hoặc bằng 0 

vậy giá trị nhỏ nhất cua A là =0

khi đó ;/x-2/=0 và/x-4/=0

suy  ra x-2=0 vàx-4=0

vậy x=2 vàx=4

kết luận a có giá trị nhỏ nhất bằng 0 khi x=2 và x=4

b)tương tự

c)ta có /2x+4.5/ lớn hơn hoac =0

/x-2.7/lớn hơn hoac = 0 

mà /2x+4.5/+/x-2.7/=0

từ 3 dieu tren suy ra khi dó 

/2x+4.5/=0 và /x-2.7/=0

suy ra x=-2.25 và x=2.7

14 tháng 11 2016

x  chỉ là lớn hơn hoặc bằng 0

16 tháng 10 2017

Bằng 0 và ko có giá trị của x thỏa mãn

16 tháng 10 2017

làm ơn ghi lời giải

12 tháng 8 2016

Bài 1:

a)|x-2|=x-2

<=>x-2=-(x-2) hoặc (x-2)

  • Với x-2=-(x-2) 

=>x-2=-x+2

=>x=2

  • Với x-2=x-2.Ta thấy 2 vế cùng có số hạng giống nhau =>mọi \(x\in R\)đều thỏa mãn

b)|2x+3|=5x-1

=>2x+3=-(5x-1) hoặc 5x-1

  • Với 2x+3=-(5x-1)

​=>2x+3=-5x+1

=>x=-2/7 (loại)

  • Với 2x+3=5x-1

​=>x=4/3

Bài 2:

a)Ta thấy:\(\begin{cases}\left|x-2\right|\\\left|3+y\right|\end{cases}\ge0\)

\(\Rightarrow\left|x-2\right|+\left|3+y\right|\ge0\)

\(\Rightarrow A\ge0\)

Dấu = khi \(\begin{cases}\left|x-2\right|=0\\\left|3+y\right|=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2\\y=-3\end{cases}\)

Vậy MinA=0 khi x=2; y=-3

b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) và dấu = khi \(ab\ge0\) ta có:

\(\left|x-2016\right|+\left|x-2017\right|\ge\left|x-2016+2017-x\right|=1\)

\(\Rightarrow B\ge1\)

Dấu = khi \(ab\ge0\)\(\Leftrightarrow\left(x-2016\right)\left(x-2017\right)\ge0\)\(\Leftrightarrow\begin{cases}\left(x-2016\right)\left(x-2017\right)\\2016\le x\le2017\end{cases}\)

\(\Leftrightarrow\begin{cases}x=2016\\x=2017\end{cases}\)

Vậy MinB=1 khi x=2016 hoặc 2017

 

 

12 tháng 8 2016

lần sau đăng ít thôi