Cho biểu thức \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
a) Ruts gon biểu thúc
b) Cmr nếu a là số nguyên thj giá trị của biểu thức tìm đc của câu a , là 1 p/s tối giản
Giúp mk vs!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời
a)\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^2\left(a+1\right)+\left(a+1\right)+\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a-1}\)
b) Gọi d là ƯCLN (\(a^2+a-1;a^2+a+1\))
\(\Rightarrow\hept{\begin{cases}a^2+a+1⋮d\\a^2+a-1⋮d\end{cases}}\)
\(\Rightarrow\left(a^2+a+1\right)-\left(a^2+a-1\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow\)d=1 hoặc d=2
Mà a(a+1)-1. Với là số nguyên ta có a(a+1) là tích 2 nguyên số liên tiếp
\(\Rightarrow a\left(a+1\right)⋮2\)\(\Rightarrow a\left(a+1\right)-1\)lẻ
\(\Rightarrow d\ne2\)
\(\RightarrowĐPCM\)
a)
A =
a
3
+ a
2
+ a
2
+ a + a + 1
a
3 + a
2
+ a
2 − 1 =
a
2
a + 1 + a a + 1 + a + 1
a
2
a + 1 + a + 1 a + 1 =
a + 1 a
2
+ a + 1
a + 1 a
2
+ a − 1 =
a
2
+ a − 1
a
2
+ a − 1
b) gọi d = ƯCLN (a2
+ a - 1; a2
+ a +1 )
=> a2
+ a - 1 chia hết cho d
a
2
+ a +1 chia hết cho d
=> (a2
+ a + 1) - (a2
+ a - 1) chia hết cho d => 2 chia hết cho d
=> d = 1 hoặc d = 2
Nhận xét: a2
+ a -1 = a.(a+1) - 1 . Với số nguyên a ta có a(a+1) là tích 2 số nguyên liên tiếp => a.(a+1) chia hết cho 2
=> a(a+1) - 1 lẻ => a2
+ a - 1 lẻ
=> d không thể = 2
Vậy d = 1 => đpcm
Có đầy câu hỏi tương tự đáy bạn lên các câu hỏi đó mà xem
a: \(A=\dfrac{a^3+a^2+a^2+a-a-1}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)
\(=\dfrac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\dfrac{a^2+a-1}{a^2+a+1}\)
b: Nếu a là số nguyên âm thì a<0
Vì a2+a=a(a+1) chia hết cho 2 nên \(a^2+a-1;a^2+a+1\) là hai số tự nhiên lẻ liên tiếp
hay A là phân số tối giản
\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)
\(A=\frac{a^2+a-1}{a^2+a+1}\)\(\left(a\ne-1\right)\)
b)Gọi d là ước chung lớn nhất của a2 +a-1 và a2+a+1
Vì a2 +a-1=a(a+1)-1 là lẻ nên d cũng là số lẻ.
Tự làm tiếp nhé,đến đây chắc bạn làm đc chứ,hok tốt!
\(A=\frac{a^2+a-1}{a^2+a+1}\)
Vì: \(a^2+a=a\left(a+1\right)\)
a là số nguyên
=> a, a+1 là 2 số nguyên liên tiếp
=> a.(a+1) là số chẵn
=> \(a^2+a+1,a^2+a-1\)là 2 số nguyên lẻ liên tiếp
Mà 2 số lẻ liên tiếp nguyên tố cùng nhau
(chúng minh: (2k+1, 2k+3)=d
=> 2k+1 chia hết cho d, 2k+3 chia hết cho d
=> 2k+3-(2k+1)=2 chia hết cho d
=> d=\(2\)hoặc d=\(1\)
Nếu d=\(2\)=> 2k+1 chia hêt cho 2 vô lí
=> d=\(1\))
=> (\(a^2+a+1,a^2+a-1\))=1
Vậy A là phân số tối giản
\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+1\right)+\left(2a^2+2a\right)}=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)
\(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2-a+1+2a\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
b) gọi d là UWCLN của a^2 +a +1 và a^2 + a -1
ta có a^2 + a -1 = a(a+1) - 1 là số lẻ nên d à số lẻ
mawth khác( a^2 + a +1) - (a^2+a-1) = 2 chia hết cho d nên d =1 hay a^2+a-1 và a^2+a+1 là 2 số nguyên tố cùng nhau
vậy A là phân số tối giản