........ = 2 = 10
63 7 .......
help me,cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(10^{100}+10^{1000}+7=(10^{100}-1)+(10^{1000}-1)+9\\
=\underbrace{999...9}_{100}+\underbrace{999...9}_{1000}+9\)
Tổng này chia hết cho 9 do 3 số hạng đều chia hết cho 9.
Bai nay huoc dang tong-hieu
phan so thu nhat la:
(50/63+22/63):2 = 4/7
nho k cho minh
Phân số thứ nhất là:
\(\left(\frac{50}{63}+\frac{22}{63}\right):2=\frac{4}{7}\)
Đáp số:\(\frac{4}{7}\)
C = - 1/2 + 3/10 + 5/50 + 7/170 +9/442 + 11/962
C = - 1/2 + 3/10 + 1/10 + 7/170 + 9/442 + 11/962
C = - 1/37
Trả lời:
\(10+11+12+13+14+15+16+17+18+19+20\)
\(=\left(10+20\right)+\left(11+19\right)+\left(12+18\right)+\left(13+17\right)+\left(14+16\right)+15\)
\(=30+30+30+30+30+15\)
\(=165\)
\(1+2+3+4+5+6+7+8+9\)
\(=\left(1+9\right)+\left(2+8\right)+\left(3+7\right)+\left(4+6\right)+5\)
\(=10+10+10+10+5\)
\(=45\)
10+11+12+13+14+15+16+17+18+19+20
(10+20)+(11+19)+(12+18)+(13+17)+(14+16)+15
30+30+30+30+30+15
165
a, ta có:
\(\sqrt{24}=4,89\\ \sqrt{3}=1,73\)
\(\Rightarrow\sqrt{24}+\sqrt{3}=4,89+1,73=6,62\)
vì 7>6,62 nên 7>\(\sqrt{24}+\sqrt{3}\)
a) 810 - 89 - 88 = 88(82-8-1) = 88.55 chia hết cho 55
b) 2454.5424.210
= (23.3)54.(33.2)24.210
= (23)54.354.(33)24.224.210
= 2162.354.372.224.210
= 2196.3126
Mà 7263 = (23.32)63=(23)63.(32)63 = 2189.3126
Lại có: 2196.3126 chia hết cho 2189.3126
=> 2454.5424.210 chia hết cho 7263
c) 210 + 211 + 212 = 210(1+2+4) = 210.7 :7 = 210
=> (210 + 211 + 212):7 là 1 số tự nhiên
dãy số trên ko có quy tắc:
\(\frac{1}{1}\)đến \(\frac{1}{7}\)= 1:7=\(\frac{1}{1}\):7
\(\frac{1}{7}\)đến \(\frac{1}{26}\)= ko có quy tắc
vì vậy số hạn thứ 50 chưa thể tính
\(A=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(A=7\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+....+\frac{1}{69.70}\right)\)
\(A=7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+....+\frac{1}{69}-\frac{1}{70}\right)\)
\(A=7\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(A=7\cdot\frac{3}{35}=\frac{21}{35}\)
\(A=\frac{7}{10\cdot11}+\frac{7}{11\cdot12}+\frac{7}{12\cdot13}+...+\frac{7}{69\cdot70}\)
\(A=7\left(\frac{1}{10\cdot11}+\frac{1}{11\cdot12}+\frac{1}{12\cdot13}+...+\frac{1}{69\cdot70}\right)\)
\(A=7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(A=7\left(\frac{1}{10}-\frac{1}{70}\right)=7\cdot\frac{3}{35}=\frac{3}{5}\)
\(B=\frac{1}{25\cdot27}+\frac{1}{27\cdot29}+\frac{1}{29\cdot31}+...+\frac{1}{73\cdot75}\)
\(B=\frac{1}{2}\left(\frac{2}{25\cdot27}+\frac{2}{27\cdot29}+\frac{2}{29\cdot31}+...+\frac{2}{73\cdot75}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{75}\right)=\frac{1}{2}\cdot\frac{2}{75}=\frac{1}{75}\)
\(C=\frac{4}{2\cdot4}+\frac{4}{4\cdot6}+\frac{4}{6\cdot8}+...+\frac{4}{2008\cdot2010}\)
\(C=\frac{4}{2}\left(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{2008\cdot2010}\right)\)
\(C=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(C=2\left(\frac{1}{2}-\frac{1}{2010}\right)=2\cdot\frac{502}{1005}=\frac{1004}{1005}\)
5=2=10
63 7 9
18 = 2 = 10
63 7 35
/HT\