chứng minh rằng : 2a -5b + 6c chia hết cho 7 nếu a-11b+3c chia hết cho 17 ( a, b , c thuộc Z )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(a-11b+3c⋮17\Rightarrow2a-22b+6c⋮17\)
Ta có \(17b⋮17\)
Nên \(2a-22b+6c+17b=2a-5b+6c⋮17\left(dpcm\right)\)
Ta có:\(\left(2a-5b+6c\right)+15\left(a-11b+3c\right)=17a-170b+51c⋮17\)
Mà \(15\left(a-11b+3c\right)⋮17\Rightarrow2a-5b+6c⋮17\left(đpcm\right)\)
Lời giải:
$a-11b+3c\vdots 17$
$\Rightarrow 2(a-11b+3c)\vdots 17$
$\Rightarrow 2a-22b+6c\vdots 17$
$\Rightarrow 2a-5b+6c-17b\vdots 17$
$\Rightarrow 2a-5b+6c\vdots 17$ (đpcm)
ta có :
\(a-11b+3c\) \(⋮\) 17
\(\Rightarrow\) \(2a-22b+6c\) \(⋮\) 17
Mặt khác : \(2a-22b+6c-\left(2a-5b+6c\right)\)
\(=2a-22b+6c-\left(2a+5b-6c\right)\)
\(=-17b\) \(⋮\) 17
\(\Rightarrow2a-5b+6c\) \(⋮\) 17
Ta có a-11b+3c chia hết cho 17 => 2a+22b+6c cũng chia hết cho 17
Ta có 2a+22b+6c+2a-5b+6c=17b chia hết cho 17
=> 2a-5b+6c chia hết cho 17