tìm chữ số tận cùng của số \(A=3^n-2^n+3^n-2^2\)(với \(n\in N\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=3^n(3^n+1)-2^n(2^2+1)
\(=3^n\cdot10-2^{n-1}\cdot10\)
\(=10\left(3^n-2^{n-1}\right)\)
=>A có chữ số tận cùng là 0
3n.2.5-2n.5=5.(3n.2-2n)=5.(2.(3n-(2(n-1))=10.(3n-(2n-1)
vì 10.(3n-(2n-1) nên chữ số tận cùng là số 0 ( mình ko bít cách viết mũ Sorry)
bạn bấm vào fx là có thể viết số mũ
hay bạn bấm vào shilf +6 là ra ^ ( ^ là số mũ)
\(3^{n+2}+3^n-\left(2^{n+2}+2^n\right)=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
n nguyên dương \(\Rightarrow2^n\) chẵn \(\Rightarrow2^n.5\) có tận cùng bằng 0
Vậy giá trị biểu thức trên có tận cùng bằng 0
\(A=3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.3^2-2^n.2^2+3^n-2^n\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5\)
\(=3^n\cdot10-2^{n-1}.10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
Vì A chia hết cho 10 nên A có chữ số tận cùng là 0
Ta có \(^{3^{n+2}}\)- \(^{2^{n+2}}\)+ \(^{3^n}\)- \(^{2^n}\)
=( \(^{3^{n+2}}\)+ \(^{3^n}\)) - ( \(^{2^{n+2}}\) + \(^{2^n}\))
= (\(^{3^n}\)( \(^{3^2}\)+ 1 ) ) - ( \(^{2^n}\)(\(2^2\)+1 ) )
= ( 3^n * 10 ) - ( 2^n * 5 ) = ( 3^n * 10 ) - ( \(^{2^{n-1}}\)* 2 * 5 )
= ( 3^n * 10 ) - ( \(^{2^{n-1}}\)* 10 )
Vì 3^n *10 chia hết cho 10 và \(^{2^{n-1}}\)* 10 chia hết cho 10
=> A chia hết cho 10 => A có chữ số tận cùng là 0
A=3n+2- 2n+ 2+3n-2n
A=(3n+2+3n)+(-2n+2-2n)
A=3n(9+1)+2n(4+1)
A=3nx10+2nx5=>A có chữ số tận cùng là 0
A = n^5 - n = n(n^4-1) = n(n^2 +1)(n^2 -1) =n(n^2 +1)(n+1)(n-1)
* n(n +1) chia hết cho 2 => A chia hết cho 2.
*cm: A chia hết cho 5.
n chia hết cho 5 => A chia hết cho 5.
n không chia hết cho 5 => n = 5k + r (với r =1,2,3,4)
- r = 1 => n - 1 = 5k chia hết cho 5 => A chia hết cho 5
- r = 2 => n^2 + 1 = 25k^2 + 20k + 5 chia hết cho 5 => A chia hết cho 5
- r = 3 => n^2 + 1 = 25k^2 + 30k + 10 chia hết cho 5 => A chia hết cho 5
- r = 4 => n +1 = 5k + 5 chia hết cho 5 => A chia hết cho 5
=> A luôn chia hết cho 5
2,5 nguyên tố cùng nhau => A chia hết cho 2.5=10 => A tận cùng là 0
=> đpcm
a=(3^(n+2)+3^n)+(2^(n+2)+2^n)
a=3^n(9+1)+2^(n-1)x2x(4+1)
a=3^n x10 +2^(n-1)x10
a=10(3^n+2^(n-1)
vì n thuộc N*=>n-1>=0=>2^(n-1) thuộc N
=>3^n thuộc N
=> 3^n+2^(n-1) là số tự nhiên
=> a tận cùng là 0
bn có thể bỏ phần vì n.....đến hết đi vì một số nhân với 10 tận cùng sẽ là o
\(3^{n+2}\) + \(3^n\) = \(3^n\) x 10 Tận cùng = số 0
Cộng 4 tận cùng là số 4