CMR:2100 có 31 chữ số khi viết trong hệ thập phân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
2^100 = ﴾2^10﴿^10 = 1024^10
10^30 = ﴾10^3﴿^10 = 1000^10
Vì 1024^10 > 1000^10 nên 2^100 > 10^30 ﴾1﴿
Lại có:
2^100 = 2^31.2^63.2^6 = 2^31.512^7.64
và 10^31 = ﴾2.5﴿^31 = 2^31.5^31 = 2^31.5^28.5^3 = 2^31.625^7.125
Vì 2^31.512^7.64 < 2^31.625^7.125 nên 2^100 < 10^31﴾2﴿
Từ ﴾1﴿ và ﴾2﴿ => 2^100 viết trong hệ thập phân có 31 chữ số
Vậy số 2^100 viết trong hệ thập phân có 31 chữ số ﴾đpcm﴿
NHỚ TK MK NHA,MK ĐANG ÂM ĐIỂM
Ta có \(2^{100}=\left(2^{10}\right)^{10}=1024^{10}>1000^{10}=\left(10^3\right)^{10}=10^{30}\).
Ta chứng minh \(2^{100}< 10^{31}\Leftrightarrow\dfrac{1024^{10}}{1000^{10}}< 10\).
Ta có \(\dfrac{1024^{10}}{1000^{10}}< \dfrac{1025^{10}}{1000^{10}}=\left(\dfrac{41}{40}\right)^{10}\).
Dễ thấy \(\dfrac{41}{40}< \dfrac{40}{39}< ...< \dfrac{32}{31}\Rightarrow\left(\dfrac{41}{40}\right)^{10}< \dfrac{41}{40}.\dfrac{40}{39}...\dfrac{32}{31}=\dfrac{41}{31}< 10\Rightarrow\dfrac{1024^{10}}{1000^{10}}< 10\).
Do đó \(2^{100}\) viết trong hệ thập phân có 31 chữ số.
Ta có:210=1024>103=>2100>1030 (1)
Mặt khác: 210=1024<1025=>2100<102510
=>\(\frac{2^{100}}{10^{30}}=\left(\frac{2^{10}}{10^3}\right)^{10}<\left(\frac{1025}{10^3}\right)^{10}=\left(\frac{41}{40}\right)^{10}\)
Ta đã biết:Nếu 0<b<a thì ab+b<ab+a
=>b(a+1)<a(b+1)
=>\(\frac{a+1}{b+1}<\frac{a}{b}\) (*)
Áp dụng (*) ta có: \(\frac{41}{40}<\frac{40}{39}<\frac{39}{38}<...<\frac{32}{31}<\frac{31}{30}\)
do đó \(\frac{2^{100}}{10^{30}}=\left(\frac{41}{40}\right)^{10}<\frac{40}{39}.\frac{39}{38}....\frac{32}{31}.\frac{31}{30}=\frac{4}{3}<2\)
=>2100<2.1030 (2)
Từ (1);(2)=>1030<2100<2.1030
=>2100 có tất cả 31 chữ số,nếu viết trong hệ thập phân thì 2100 có 30 chữ số