K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2022

[-1;3] và [3;-1]

 

24 tháng 1 2022

Ta có xy = -3 = (-1).3 = 1.(-3).

Do đó:

+) x = -1y = 3 suy ra x + y = (-1) + 3 = 2 (nhận)

+) x = 3y = -1 suy ra x + y = 3 +(-1) = 2 (nhận)

+) x = -3y = 1 suy ra x + y = (-3) + 1 = -2 (loại)

+) x = 1y = -3 suy ra x + y = 1 + (-3) = -2 (loại)

Vậy ta có các cặp số (xy) là (-1;3) và (3; -1)

16 tháng 4 2017

x=3;y=4

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
23 tháng 2 2020

câu 1 a) xy=-5 => (x,y)=(1,-5),(-1,5)  

b) xy=-5 với x>y=>x=1,y=-5

c)(x+1)(y-2)=-5 => * x+1=1 và y-2=-5  => x=-1, y=-3

                              * x+1=-5 và y-2=1=> x=-6 , y=3

câu 2 , câu 3 tương tự

14 tháng 2 2020

kb nick tok đi

id;minyoonibts

6 tháng 3 2020

a )

(x-3).(2y+1)=7 
(x-3).(2y+1)= 1.7 = (-1).(-7) 
Cứ cho x - 3 = 1 => x= 4 
2y + 1 = 7 => y = 3 
Tiếp x - 3 = 7 => x = 10 
2y + 1 = 1 => y = 0 
x-3 = -1 ...

6 tháng 3 2020

1.tìm các số nguyên x và y sao cho:

(x-3).(2y+1)=7

Vì x;y là số nguyên =>x-3 ; 2y+1 là số nguyên

                               =>x-3  ; 2y+1 C Ư(7)

ta có bảng:

x-317-1-7
2y+171-7-1
x4102-4
y30-4-1

Vậy..............................................................................

2.tìm các số nguyên x và y sao cho:

xy+3x-2y=11

x.(y+3)-2y=11

x.(y+3)-y=11

x.(y+3)-(y+3)=11

(x-1)(y+3)=11

Vì x;y là số nguyên => x-1;y+3 là số nguyên

                               => x-1;y+3 Thuộc Ư(11)

Ta có bảng:

x-1111-1-11
y+3111-11-1
x2120-10
y8-2-14-4

Vậy.......................................................................................

5 tháng 9 2019

a) Do \(x,y\inℤ\Rightarrow\hept{\begin{cases}x+2\inℤ\\y-1\inℤ\end{cases}}\)

\(\Rightarrow x+2,y-1\)là các cặp ước của 3.

Ta có bảng sau :

x+21-13-3
x-1-31-5
y-13-31-1
y4-220
Đánh giáChọnChọnChọnChọn

Vậy : \(\left(x,y\right)\in\left\{\left(-1,4\right);\left(-3,-2\right);\left(1,2\right);\left(-5,0\right)\right\}\)

5 tháng 9 2019

a) ( x + 2 ) ( y - 1 ) = 3

Mà x,y \in  Z

=>( x + 2 ) và ( y - 1 )  \in Ư(3)={±1;±3}

Ta có bảng 

x+2

1-13-3
y-13-31-1
x-1-31-5
y4-220

Vậy (x,y) thuộc {(-1;4);(-3;-2);(1;2);(-5;0)}

b) ( 3 -x ) ( xy + 5 ) = -1

Vì x,y thuộc Z

=>( 3 -x ) và ( xy + 5 ) thuộc Ư(-1)={ ±1}

Ta có bảng

3-x1-1
xy+5-11
x24
y-3-1

Vậy x,y thuộc {(2;-3);(4;-1)}

1 tháng 7 2021
Nãy mình gửi nhầm bài trên. Câu trả lời bằng hình

Bài tập Tất cả

1 tháng 7 2021

\(a)\)

\(\left(x+3\right)\left(y+1\right)=3=1.3=\left(-1\right).\left(-3\right)\)

Ta có bảng sau:

\(x+3\)\(1\)\(-1\)\(3\)\(-3\)
\(y+1\)\(3\)\(-3\)\(1\)\(-1\)
\(x\)\(-2\)\(-4\)\(0\)\(-6\)
\(y\)\(2\)\(-4\)\(0\)\(-2\)

Vậy ...

\(b)\)

\(\left(x-1\right)\left(xy+1\right)=2=1.2=\left(-1\right).\left(-2\right)\)

Ta có bảng sau:

\(x-1\)\(1\)\(-1\)\(2\)\(-2\)
\(xy+1\)\(2\)\(-1\)\(1\)\(-1\)
\(x\)\(2\)\(0\)\(3\)\(-1\)
\(y\)\(\frac{1}{2}\)Loại\(0\)\(2\)

Vậy ...

\(c)\)

\(xy-2=5\)

\(\Leftrightarrow x\left(y-2\right)=5=1.5=\left(-1\right).\left(-5\right)\)

Ta có bảng sau:

\(x\)\(1\)\(-1\)\(5\)\(-5\)
\(y-2\)\(5\)\(-5\)\(1\)\(-1\)
\(y\)\(7\)\(-3\)\(3\)\(1\)

Vậy ...

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Câu 2: 

a: x=25