K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

viet dc k bạn

2 tháng 4 2018

\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)

Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)

=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)

Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)

13 tháng 4 2022

\(\Delta'=m^2-6x+9-2m+7=m^2-8m+16=\left(m-4\right)^2\)

để phương trình có 2 nghiệm phân biệt =>  \(m\ne4\)

vời m khác 4 theo viet :

\(\left\{{}\begin{matrix}x1+x2=2m-6\left(1\right)\\x1.x2=2m-7\left(2\right)\end{matrix}\right.\)

\(x2-2x1=1\left(3\right)\)

từ 1 và 3 ta có hpt : 

\(\left\{{}\begin{matrix}x1+x2=2m-6\\-2x1+x2=1\end{matrix}\right.< =>\left\{{}\begin{matrix}3x1=2m-7\\-2x1+x2=1\end{matrix}\right.< =>\left\{{}\begin{matrix}x1=\dfrac{2m-7}{3}\\\dfrac{-4m+14}{3}+x2=1\end{matrix}\right.< =>\left\{{}\begin{matrix}x1=\dfrac{2m-7}{3}\\x2=1-\dfrac{-4m+14}{3}=\dfrac{4m-11}{3}\end{matrix}\right.\)

thay \(\left\{{}\begin{matrix}x1=\dfrac{2m-7}{3}\\x2=1-\dfrac{-4m+14}{3}=\dfrac{4m-11}{3}\end{matrix}\right.\) vào phương trình 2

<=>\(\dfrac{2m-7}{3}.\dfrac{4m-11}{3}=2m-7< =>8m^2-50m+77=18m-63< =>8m^2-68m+140=0< =>\left(m-5\right)\left(2m-7\right)=0< =>m=5\left(tm\right);m=\dfrac{7}{2}\left(tm\right)\)

NV
11 tháng 9 2021

\(\Delta'=\left(m+1\right)^2-\left(m^2+2m\right)=1>0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=m+1-1=m\\x_2=m+1+1=m+2\end{matrix}\right.\)

\(\left|x_1\right|=3\left|x_2\right|\Leftrightarrow\left|m\right|=3\left|m+2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3m+6=-m\\3m+6=m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\dfrac{3}{2}\\m=-3\end{matrix}\right.\)

15 tháng 10 2018

à đây là lớp 9 mà mình tưởng lớp 6 !??

14 tháng 4 2022

Thảo luận 1

đầu tiên cho denta > 0 để có 2 nghiệm đã ta thấy denta'=m^2+(m-1)^2 luôn luôn duơng nên có 2 no theo Viet ta có S= x1+x2=-b/a=2(m+1) P=x1.x2=c/a=4m-m^2 Theo GT A=/x1-x2/ min tuơng đuơng A^2=(x1-x2)^2 min=(x1+x2)^2-4x1.x2 ráp tổng tích vào, làm gọn ta có A^2= 2(m-1)^2+4m^2 mà 4m^2>=0, mim khi m=0, A^2=2 2(m-1)^2>=0, min khi m=1, A^2=4 Chọn A^2min=2, suy ra Amin= căn 2

Thảo luận 2

A=/x1-x2/ => A^2 = /x1-x2/^2 = (x1-x2)^2 => Amin khi (x1-x2)^2 min = (x1+x2)^2 - 4x1x2 min Ta co: x1 + x2 = 2(m+1) ; x1x2 = 4m-m^2. Thay vao: 4(2m^2 -2m+1) = 8 (m-1/2)^2 + 2 >= 2. A^2 >= 2 A = 0) hay A >= can2. Vậy Amin = can 2

14 tháng 4 2022

\(a=1;b=-2\left(2m+1\right);c=4m^2+4m;b'=\dfrac{b}{2}=-\left(2m+1\right)\)

\(\Delta'=b'^2-ac=\left[-\left(2m+1\right)\right]^2-1.\left(4m^2+4m\right)\\ =4m^2+4m+1-4m^2-4m\\ =1>0\)

\(\Leftrightarrow\Delta'>0\) mà \(a=1\ne0\left(luônđúng\right)\)

=> pt luôn có 2 no pb x1;x2

ad đl viet có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(2m+1\right)=4m+2\\x_1x_2=\dfrac{c}{a}=4m^2+4m\end{matrix}\right.\)

ta có: \(\left|x_1-x_2\right|=x_1+x_2\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=\left(x_1+x_2\right)^2\\ \Leftrightarrow\left(4m+2\right)^2-4\left(4m^2+4m\right)=\left(4m+2\right)^2\\ \Leftrightarrow-4\left(4m^2+4m\right)=0\\ \Leftrightarrow4m\left(m+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=-1\left(loại\right)\end{matrix}\right.\)

Ta có: \(\Delta=4m^2+4m-11\)

Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow4m^2+4m-11>0\)

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+3\\x_1x_2=2m+5\end{matrix}\right.\)

Để phương trình có 2 nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}4m^2+4m-11>0\\2m+3>0\\2m+5>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< \dfrac{-1-2\sqrt{3}}{2}\\m>\dfrac{-1+2\sqrt{3}}{2}\end{matrix}\right.\\m>-\dfrac{3}{2}\\m>-\dfrac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow m>\dfrac{-1+2\sqrt{3}}{2}\)

 Mặt khác: \(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}=\dfrac{4}{3}\)

\(\Rightarrow\dfrac{x_1+x_2+2\sqrt{x_1x_2}}{x_1x_2}=\dfrac{16}{9}\) \(\Rightarrow\dfrac{2m+3+2\sqrt{2m+5}}{2m+5}=\dfrac{16}{9}\)

\(\Rightarrow18m+27+18\sqrt{2m+5}=32m+80\)

\(\Leftrightarrow14m-53=18\sqrt{2m+5}\)

\(\Rightarrow\) ...

 

22 tháng 5 2021

giúp mình với ạ ! Mình cảm ơn ạ