K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

Giả sử p-1 là số chính phương

Do p là tích của 2016 số nguyên tố đầu tiên

Suy ra:p chia hết 3. Do đó

\(p-1\equiv-1\left(mod3\right)\);\(p+1\equiv1\left(mod3\right)\)

Đặt \(p-1=3k-1;p+1=3k+1\)

Một số chính phương không có dạng \(3k-1;3k+1\)

Mẫu thuẫn với giả thiết ->Đpcm

 

 

Đặt \(p-1=3k-1\)

Một số chính phương không có dạng \(3k-1\) (mâu thuẫn với gt)

 

 

26 tháng 10 2016

bn bỏ cái phần từ khoảng trống kia xuống nhé

16 tháng 4 2016

Vì p là tích của n số nguyên tố đầu tiên nên p chia hết cho 2 và không chia hết cho 4

Ta chứng minh p + 1 là số chính phương

Giả sử p + 1 là số chính phương. Đặt p + 1 = m2

Vì p chẵn nên p + 1 lẻ => m lẻ => m2 lẻ

Đặt m = 2k + 1. Ta có : m2 = 4k2 + 4k + 1 => p + 1 = 4k2 + 4k + 1 => p = 4k2 + 4k = 4k(k+1) chia hết cho 4

Ta chứng minh p – 1 là số chính phương

Ta có: p = 2.3.5…. chia hết cho 3 => p -1 = 3k + 2

Vì không có số chính phương nào có dạng 3k + 2 nên p – 1 không phải số chính phương

Vậy nếu p là tích 2016 số nguyên tố đầu tiên thì p + 1 và p – 1 không phải số chính phương

25 tháng 4 2018

nhận xét:số chính phương khi chia cho 3 hay 4 đều có số dư là 0 hoặc 1

Ta có:\(P=2\cdot3\cdot5\cdot....\)

Do p chia hết cho 3 nên p-1 chia 3 dư 2.theo nhận xét suy ra p-1 không phải là số chính phương(1)

dễ thấy p không chia hết cho 4 và p chia hết cho 2 nên p chia 4 dư 2 suy ra p+1 chia 4 dư 3.theo nhận xét suy ra p+1 không là số chính phương

TỪ(1),(2) suy ra điều cần chứng minh

13 tháng 3 2019

giúp mk đi sặp nộp bài rùi!!!!!!!!!!!!!!!!!!

7 tháng 3 2018

Có abbc < 10.000 
=> ab.ac.7 < 10000 
=> ab.ac < 1429 
=> a0.a0 < 1429 (a0 là số 2 chữ số kết thúc = 0) 
=> a0 < 38 
=> a <= 3 
+) Với a = 3 ta có 
3bbc = 3b.3c.7 
Ta thấy 3b.3c.7 > 30.30.7 = 6300 > 3bbc => loại 
+)Với a = 2 ta có 
2bbc = 2b.2c.7 
Ta thấy 2b.2c.7 > 21.21.7 = 3087 > 2bbc => loại ( là 21.21.7 vì b và c khác 0 nên nhỏ nhất = 1) 
=> a chỉ có thể = 1 
Ta có 1bbc = 1b.1c.7 
có 1bbc > 1b.100 => 1c.7 > 100 => 1c > 14 => c >= 5 
lại có 1bbc = 100.1b + bc < 110.1b ( vì bc < 1b.10) 
=> 1c.7 < 110 => 1c < 16 => c < 6 
vậy c chỉ có thể = 5 
ta có 1bb5 = 1b.15.7 => 1bb5 = 1b.105 
<=> 100.1b + b5 = 1b.105b 
<=> b5 = 5.1b 
<=> 10b + 5 = 5.(10+b) 
=> b = 9 
vậy số abc là 195

chúc bn hk toyó @_@