K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2015

 S=1+3+32+34+........+32006

3S= 3 +32+33+...+32006+32007

3S-S= 3 +32+33+...+32006+32007 - 1-3-32-34-........-32006

2S= -1+32007 => S=\(\frac{-1+3^{2007}}{2}\)

 x.y +12 =x+y -> x.y-x-y =-12

                     -> x.y-x-y+1=-12+1

                         x.(y-1)-y+1 =-11

                        (y-1).(x-1) =-11=(-1).11= (-11).1 

 + Nếu y-1 = -1 -> y=0 ; x=11+1=12

 + Nếu y-1= -11 -> y = -10    ;  x= 1+1 =2

Vậy x=12, y=0 và x=2 ; y =-10  là 2 cặp số cần tìm

  

 

 

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 1:

a. $2^{29}< 5^{29}< 5^{39}$

$\Rightarrow A< B$

b.

$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$

$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$

$=(1+3)(3+3^3+3^5+...+3^{2009})$

$=4(3+3^3+3^5+...+3^{2009})\vdots 4$

Mặt khác:

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$

$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 1:
c.

$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$

$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$

$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$

$\Rightarrow A=\frac{3^{101}+1}{4}$

24 tháng 12 2021

\(a,A=3+3^2+3^3+3^4+...+3^{100}\\ 3A=3^2+3^3+3^4+3^5+3^{101}\\ 3A-A=2A=3^{101}-3\\ \Rightarrow2A+3=3^{101}=3^{4.25+1}\\ \Rightarrow n=25\)

 

22 tháng 12 2021

Lồn bâm

22 tháng 12 2021

Gâu gâu 

a: \(B=3+3^2+3^3+...+3^{60}\)

\(=3\left(1+3+3^2+...+3^{59}\right)⋮3\)

=>B là hợp số

b: \(x^3+5^y=133\)

=>\(\left\{{}\begin{matrix}x^3< 133\\5^y< 133\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< \sqrt[3]{133}\simeq5,1\\y< log_5133\simeq3,03\end{matrix}\right.\)

mà x,y là các số nguyên dương

nên \(\left\{{}\begin{matrix}x\in\left\{1;2;3;4;5\right\}\\y\in\left\{1;2;3\right\}\end{matrix}\right.\)

mà \(x^3+5^y=133\)

nên x=2 và y=3

26 tháng 1 2022

a) x2-y2=45 =>(x-y)(x+y)=45. Vì x,y là các số tự nhiên và x-y<x+y nên ta có thể viết:

(x-y)(x+y)=3.15 hay (x-y)(x+y)=5.9

=>x-y=3 và x+y=15 hay x-y=5 và x+y=9.

=>x=9 và y=6 (đều loại) hay x=7 và y=2 (đều thỏa mãn).

- Vậy x=7, y=2.

26 tháng 1 2022

b) - Sửa lại đề: S=1+3+32+33+...+330.

=(1+3+32)+(32+33+34+35)+...+(327+328+329+330).

=13+32(1+3+32+33)+...+327(1+3+32+33)

=13+32.40+...+327.40

=13+40.(32+...+327) chia 5 dư 3.

- Mà các số chính phương chỉ có chữ số tận cùng là 0.1.4.5.6.9 nên số chính phương chia 5 dư 0;1;4.

- Vậy S không phải là số chính phương.