cho tam giác ABC có BC=2, hc=\(\sqrt{2}\), R = \(\sqrt{5}\). Tính AB, AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm ba phân số khác nhau biết phân số thứ nhất và phân số thứ hai là 7/8,tổng của phân số thứ hai và phân số thứ ba là 8/7,tổng của phân số thứ nhất và phân số thứ ba là 8/9
Đặt AB = c ; AC = b ; BC = a .
Ta có : \(b+c=13\) ; \(r=\dfrac{S}{p}=\sqrt{3}\) ( p \(=\dfrac{a+b+c}{2}\) )
Có : \(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) nên : \(r=\sqrt{\dfrac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}}=\sqrt{3}\)
\(\Rightarrow\left(p-a\right)\left(p-b\right)\left(p-c\right)=3p\)
\(\Leftrightarrow\left(\dfrac{-a+b+c}{2}\right)\left(\dfrac{-b+a+c}{2}\right)\left(\dfrac{-c+a+b}{2}\right)=\dfrac{3\left(a+b+c\right)}{2}\)
\(\Leftrightarrow\left(-a+b+c\right)\left(-b+a+c\right)\left(-c+a+b\right)=12\left(a+b+c\right)\)
\(\Leftrightarrow\left(-a+13\right)\left(-b+a+c\right)\left(-c+a+b\right)=12\left(13+a\right)\)
\(\Leftrightarrow\left(-a+13\right)\left[a^2-\left(b-c\right)^2\right]=12\left(13+a\right)\) (2)
Có : \(\dfrac{b^2+c^2-a^2}{2bc}=cosA=cos60^o=\dfrac{1}{2}\) \(\Rightarrow b^2+c^2-a^2=bc\) \(\Leftrightarrow a^2=b^2+c^2-bc\) (1)
Mặt khác : \(b+c=13\Leftrightarrow b^2+c^2-bc+3bc=169\Leftrightarrow a^2=169-3bc\)
Từ (1) ; (2) suy ra : \(\left(-a+13\right)bc=12\left(13+a\right)\)
\(\Leftrightarrow\left(-a+13\right)\left(169-a^2\right)=36\left(13+a\right)\)
\(\Leftrightarrow\left(13-a\right)^2\left(13+a\right)=36\left(13+a\right)\)
\(\Leftrightarrow\left(13-a\right)^2=36\) \(\Leftrightarrow\left[{}\begin{matrix}13-a=6\\13-a=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=7\\a=19>13=b+c\left(L\right)\end{matrix}\right.\)
Vậy ...
cot C=2
=>\(tanC=\dfrac{1}{cotC}=\dfrac{1}{2}\)
\(1+tan^2C=\dfrac{1}{cos^2C}\)
=>\(cos^2C=1+\dfrac{1}{4}=\dfrac{5}{4}\)
=>\(cosC=\dfrac{2}{\sqrt{5}}\) hoặc \(cosC=-\dfrac{2}{\sqrt{5}}\)
TH1: \(cosC=\dfrac{2}{\sqrt{5}}\)
=>\(\dfrac{BC^2+AC^2-AB^2}{2\cdot BC\cdot AB}=\dfrac{2}{\sqrt{5}}\)
=>\(\dfrac{5+9-AB^2}{6\sqrt{5}}=\dfrac{2}{\sqrt{5}}\)
=>\(14-AB^2=12\)
=>AB^2=2
=>\(AB=\sqrt{2}\)
TH2: \(cosC=-\dfrac{2}{\sqrt{5}}\)
=>\(\dfrac{5+9-AB^2}{6\sqrt{5}}=-\dfrac{2}{\sqrt{5}}\)
=>\(14-AB^2=\dfrac{-2}{\sqrt{5}}\cdot6\sqrt{5}=-12\)
=>AB^2=26
=>\(AB=\sqrt{26}\)