tìm x y thuộc z biết x/2-7/y=3/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
Từ: \(\frac{3}{y}=\frac{7}{x}\)=>\(\frac{x}{7}=\frac{y}{3}\)
x+16=y =>x-y=-16
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)(vì x-y=-16)
=>\(\frac{x}{7}=-4=>x=-28\)
=>\(\frac{y}{3}=-4=>y=-12\)
Vậy x=-28 ;y=-12
2)
=>x2-3x+5 chia hết cho x-3
mà (x-3)2 chia hết cho x-3
=>x2-3x+5 -(x-3)2 chia hết cho x-3
=> x2-3x+5 -x2-9 chia hết cho x-3
=>-3x+(-4) chia hết cho x-3
lại có : 3.(x-3) chia hết cho x-3
=>-3x-(-4)+3.(x-3) chia hết cho x-3
=>-3x+(-4)+3x-9 chia hết cho x-3
=>-13 chia hết cho x-3
=>x-3 \(\in\)Ư(13)={-1;1;-13;13}
=>x\(\in\){2;4;-9;16}
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
1a) \(\frac{x-3}{x+7}=\frac{-5}{-6}\)
=> \(\frac{x-3}{x+7}=\frac{5}{6}\)
=> (x - 3).6 = 5.(x + 7)
=> 6x - 18 = 5x + 35
=> 6x - 5x = 35 + 18
=> x = 53
b) \(\frac{x-7}{x+3}=\frac{4}{3}\)
=> (x - 7). 3 = (x + 3). 4
=> 3x - 21 = 4x + 12
=> 3x - 4x = 12 + 21
=> -x = 33
=> x = -33
c) \(\frac{x-10}{6}=-\frac{5}{18}\)
=> (x - 10) . 18 = -5 . 6
=> 18x - 180 = -30
=> 18x = -30 + 180
=> 18x = 150
=> x = 150 : 18 = 25/3
d) \(\frac{x-2}{4}=\frac{25}{x-2}\)
=> (x - 2)(x - 2) = 25 . 4
=> (x - 2)2 = 100
=> (x - 2)2 = 102
=> \(\orbr{\begin{cases}x-2=10\\x-2=-10\end{cases}}\)
=> \(\orbr{\begin{cases}x=12\\x=-8\end{cases}}\)
e) \(\frac{7}{x}=\frac{x}{28}\)
=> 7 . 28 = x . x
=> 196 = x2
=> x2 = 142
=> \(\orbr{\begin{cases}x=14\\x=-14\end{cases}}\)
f) \(\frac{40+x}{77-x}=\frac{6}{7}\)
=> (40 + x) . 7 = (77 - x).6
=> 280 + 7x = 462 - 6x
=> 280 - 462 = -6x + 7x
=> -182 = x
=> x = -182
Lời giải:
Với $x,y$ nguyên thì $x+3,y-7$ cũng nguyên. Mà $(x+3)(y-7)=-5$ nên ta có các TH sau:
TH1: $x+3=1, y-7=-5\Rightarrow x=-2; y=2$ (tm)
TH2: $x+3=-1, y-7=5\Rightarrow x=-4; y=12$ (tm)
TH3: $x+3=5, y-7=-1\Rightarrow x=2; y=6$ (tm)
TH4: $x+3=-5, y-7=1\Rightarrow x=-8; y=8$ (tm)
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2