Cho tam giác ABC vuông tại A, đường phân giác BE. Kẻ EH vuông góc với BC ( H thuộc BC ).
Gọi K là giao điểm của AH và BE. Chứng minh rằng:
a) Tam giác ABE = tam giác HBE b) BE là đường trung trực của AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔABE=ΔHBE
b: ΔBAE=ΔBHE
=>BA=BH và EA=EH
=>BE là trung trực của AH
c: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có
EA=EH
góc AEK=góc HEC
=>ΔEAK=ΔEHC
=>EK=EC
=>ΔEKC cân tại E
1. ΔABE = ΔHBE
Xét ΔABE và ΔHBE, ta có :
(gt)
( BE là đường phân giác của góc HBA).
BE là cạnh chung.
=> ΔABE = ΔHBE
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
3. EK = EC
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE và ΔCHE
=> EK = EC
4. EC > AC
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
Hình tự vẽ
a)Xét hai tam giác vuông ABE và HBE CÓ:
AE-chung
góc ABE=góc HBE(gt)
=>tam giác ABE=tam giác HBE(ch-gn)
b)Có tam giác ABE=tam giác HBE(cmt)
=>AB=BH
=>Tam giác BHA cân tại B
mà BE là p/g của góc ABH
=>BE là đường cao, đường trung tuyến
=>BE\(\perp\) AH
c)Xét tam giác AEK và tam giác HEC CÓ
góc KAE=góc EHC=900
AE=EH
góc AEK=góc HEC
=>tam giác AEK= tam giác HEC(c.g.c)
=>EK=EC
d)Xét tam giác EHC có góc EHC=900
=> EC là cạnh lớn nhất
=>EC>EH
Mà EH=AE
=>EC>AE
hình tự kẻ nghen:33333
a) áp dụng định lý pytago vào tam giác vuông ABC
=> AB^2+AC^2=BC^2
=> BC^2-AB^2=AC^2
=> AC^2=5^2-4^2=25-16=9
=> AC=3 (AC>0)
b) xét tam giác BAE và tam giác BHE có
B1= B2(gt)
BE chung
BAE=BHE(=90 độ)
=> tam giác BAE= tam giác BHE (ch-gnh)
c) ta có AC vuông góc với BK
HK vuông góc với BC
và AC,HK,BE cùng giao nhau tại E
=> BE vuông góc với KC ( 3 đường cao trong tam giác cùng đi qua một điểm )
1. ΔABE = ΔHBE
Xét ΔABE và ΔHBE, ta có :
(gt)
( BE là đường phân giác BE).
BE là cạnh chung.
=> ΔABE = ΔHBE
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
3. EK = EC
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE và ΔCHE
=> EK = EC
4. EC > AC
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
a) xet tam giac ABE vuong tai A va tam giac HBE vuong tai H ta co
BE=BE ( canh chung) ; goc ABE= goc HBE ( BE la tia p/g goc B)
--> tam giac ABE= tam giac HBE ( ch=gn)
b) ta co
BA=BH ( tam giac ABE= tam giac HBE)
EA=EH( tam giac ABE= tam giac HBE)
==> BE la duong trung truc cua AH
c) xet tam giac EKA va tam giac ECH ta co
AE=EH ( tam giacABE= tam giacHBE) ; goc EAK= goc EHC (=90); goc AEK= goc HEC ( 2 goc doi dinh )
--> tam giac EKA = tam giac ECH ( g--c-g)
--> EK=EC (2 canh tuong ung )
d) tu diem E den duong thang HC ta co :
EH la duong vuong goc ( EH vuong goc BC)
EC la duong xien
-> EH<EC ( quan he duong xien duong vuong goc)
ma EH= AE ( tam giac ABE= tam giac HBE)
nen AE < EC
Cho tam giác ABC vuông tại a ; đường phân giác BE. kẻ EH cuông góc BC(H thuộc BC) Gọi K là giao điểm của AB và HE . Chứng minh rằng
1) Tam giác ABE=tam giác HBE
2) BE là đường trung trực của đoạn thẳng AH; Chứng minh BE vuông góc KC
3) AE<EC
mình chỉ biết chứng minh phần a thui,mong bạn thông cảm nha
a)xét tam giác ABE và tam giác HBE có
góc BAE= góc BHE(= 90 độ)
cạnh BE chung
góc ABE= góc HBE(giả thiết)
=>tam giác ABE = tam giác HBE(c/h-g/n)(đpcm)
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔABE=ΔHBE
b: ta có: ΔABE=ΔHBE
nên AE=HE; BA=BH
Suy ra: BE là đường trung trực của AH
a/ Xét \(\Delta ABE\) và \(\Delta HBE\) có
BE chung;\(\widehat{ABE}=\widehat{HBE}\Rightarrow\Delta ABE=\Delta HBF\) (Hai tg vuông có cạnh huyền và góc nhọn tương ứng = nhau)
b/
Từ kết quả c/m câu a => BA=BH \(\Rightarrow\Delta ABH\) cân tại B
Có BE là phân giác \(\widehat{ABH}\) => BE là trung trực của AH (Trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường trung trực của cạnh đối diện)