K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2021

a, bạn tự vẽ nhé 

b, Để hàm số nghịch biến khi m < 0 

c, đths y = mx + 2m - 1 cắt trục tung tại điểm có tung độ bằng 3 

Thay x = 0 ; y = 3 ta được : \(2m-1=3\Leftrightarrow m=2\)

d, đths y = mx + 2m - 1 cắt trục hoành tại điểm có hoành độ bằng -3 

Thay x = -3 ; y = 0 ta được : \(-3m+2m-1=0\Leftrightarrow-m-1=0\Leftrightarrow m=-1\)

9 tháng 8 2021

bổ sung hộ mình nhé 

( dòng đầu tiên ) Để đths trên là hàm bậc nhất khi \(m\ne0\)

NV
8 tháng 7 2021

a. Để đồ thị qua A

\(\Rightarrow-1=-3m+m-1\)

\(\Leftrightarrow m=0\)

b. Để đồ thị cắt trục tung tại điểm có tung độ 2

\(\Rightarrow m-1=2\)

\(\Leftrightarrow m=3\)

c. Để đồ thị cắt trục hoành tại điểm có hoành độ 3

\(\Rightarrow0=3m+m-1\)

\(\Leftrightarrow m=\dfrac{1}{4}\)

27 tháng 4 2023

- Phương trình hoành độ giao điểm của (P) và (d'):

\(-x^2=mx-4\Leftrightarrow x^2+mx-4=0\left(1\right)\)

\(a=1;b=m;c=-4\)

\(\Delta=b^2-4ac=m^2-4.\left(1\right).\left(-4\right)=m^2+16>0\)

Vì \(\Delta>0\) nên (P) và (d) luôn cắt nhau tại hai điểm phân biệt có hoành độ x1, x2.

Theo định lí Viete cho phương trình (1) ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{m}{1}=-m\\x_1x_2=\dfrac{c}{a}=\dfrac{-4}{1}=-4\end{matrix}\right.\)
Ta có: \(\left(x_1-x_2\right)^2-\left(x_1+x_2\right)=18\)

\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=18\)

\(\Rightarrow\left(-m\right)^2-2.\left(-4\right)-\left(-m\right)-18=0\)

\(\Leftrightarrow m^2+m-12=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=4\\m=-3\end{matrix}\right.\)

Vậy m=4 hay m=-3.

12 tháng 6 2015

1, bạn tự vẽ nha

2, xét pt: \(x^2=4x+m\Leftrightarrow x^2-4x-m=0\)(1) ; \(\Delta=16-4.-m=16+16m\)

 (dm) và (P) cắt nhau tại hai điểm phân biệt <=> pt có 2 nghiệm p.biệt <=> \(\Delta>0\Leftrightarrow16+16m>0\Leftrightarrow m>-1\)

th1: chọn tung độ của giao điểm 1 là 1 <=> y1=1<=> \(x1=\sqrt{y1}=\sqrt{1}=1\)\(x1=\frac{4+\sqrt{16\left(m+1\right)}}{2}=\frac{4\left(1+\sqrt{m+1}\right)}{2}=2+2\sqrt{m+1}\)

thay x=1 vào ta có: \(2+2\sqrt{m+1}=1\Leftrightarrow2\sqrt{m+1}=-1\Rightarrow\)PTVN

th2: y2=1 <=> x2=1

\(x2=\frac{4-\sqrt{16\left(m+1\right)}}{2}=2-2\sqrt{m+1}\). thay x2=1 vào: \(2-2\sqrt{m+1}=1\Leftrightarrow-2\sqrt{m+1}=-1\Leftrightarrow\sqrt{m+1}=\frac{1}{2}\Leftrightarrow m+1=\frac{1}{4}\Leftrightarrow m=-\frac{3}{4}\)(t/m đk)

=> m=-3/4 thì (dm) và (P) cắt nhau tại hai điểm phân biệt, trong đó tung độ của một trong hai giao điểm đó bằng 1.

13 tháng 5 2020

16-4(-m)=16+16m ??:D??

5 tháng 12 2017

Đáp án C

Phương pháp :

+)  Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ m – 2

y = f’(m – 2)(x – m +2)+y(m – 2) (d)

+) Xác định các giao điểm của d và các đường tiệm cận => x2;y1

+) Thay vào phương trình x2 + y1 = –5 giải tìm các giá trị của m.

Cách giải: TXĐ: D = R\ {–2}

Ta có 

=>Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ m – 2 là: 

Đồ thị hàm số  y = x - 1 x + 2  có đường TCN y = 1và tiệm cậm đứng x = –2

a) Phương trình hoành độ giao điểm là:

\(x^2=2x-m+2\)

\(\Leftrightarrow x^2-2x+m-2=0\)

Để hai đồ thị hàm số chỉ có một điểm chung thì Δ=0

\(\Leftrightarrow4-1\cdot\left(m-2\right)=0\)

\(\Leftrightarrow m-2=4\)

hay m=6