Cho 2 số a,b thỏa mãn a+b=6. Hãy chứng tỏ ab =< 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có a+b=6 suy ra (a+ b)2= 36 mà (a+ b)2 lớn hơn hoặc bằng 4ab nên 36 lớn hơn hoặc bằng 4ab
suy ra ab nhỏ hơn hơn hoặc bằng 9
k mình nha
ta có a+b=\(\left(\sqrt{a}\right)^2\)\(+\left(\sqrt{b}\right)^2\)Mặt khác ta có \(\left(\sqrt{a}\right)^2-2\left(\sqrt{a}\right)\left(\sqrt{b}\right)\)\(+\left(\sqrt{b}\right)^2=\left(\sqrt{a}+\sqrt{b}\right)^2\ge0\)\(\Rightarrow\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2\ge2\left(\sqrt{a}\right)\left(\sqrt{b}\right)\)=\(2\sqrt{ab}\)\(\Rightarrow a+b\ge2\sqrt{ab}\)\(\Rightarrow\left(a+b\right)^2\ge4ab\)\(\Rightarrow36\ge4ab\Rightarrow ab\le9\)
Ta có BĐT \(a+b\ge2\sqrt{ab}\Leftrightarrow\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\forall a,b\)
Từ BĐT vừa chứng minh trên ta suy ra
\(a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le\dfrac{a+b}{2}\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\)
\(\Rightarrow ab\le\left(\dfrac{6}{2}\right)^2=3^2=9\left(a+b=6\right)\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a+b=2\sqrt{ab}\\a+b=6\end{matrix}\right.\)\(\Rightarrow a=b=3\)
Lời giải:
$\frac{ab}{bc}=\frac{b}{c}\Rightarrow \frac{a}{c}=\frac{b}{c}\Rightarrow a=b$
Cho $a=b=1, c=2$ thì:
$\frac{a^2+b^2}{b^2+c^2}=\frac{1^2+1^2}{1^2+2^2}=\frac{2}{5}$
$\frac{a}{c}=\frac{1}{2}$
Vì $\frac{2}{5}\neq \frac{1}{2}$ nên đề sai.
vì a+b=6 nên a,b<=6
=> ab<=9