Cho: Tam giác ABC cá AB=AC, tia phân giác của góc A cắt cạnh BC tại D.Lấy điểm E trên AD.Chứng minh:
a)Tam giác AEB = Tam giác AEC
b)Tam giác ABD = Tam giác ACD
c)ED là tia phân giác của góc BEC
d)AD vuông góc BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEB và ΔAEC có
AB=AC
góc BAE=góc CAE
AE chung
Do đó: ΔAEB=ΔAEC
b: Xét ΔEDB và ΔEDC có
ED chung
EB=EC
BD=CD
DO đó: ΔEDB=ΔEDC
=>góc BED=góc CED
=>ED là phân giác của góc BEC
c: Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
--
a) Xét hai tg AEB và AEC có
AE cạnh chungg
BAD = CAD [ Tia phân giác của góc A ]
AB = AC [ gt ]
=> tg AEB= AEC [ c - g c ]
b ) Tam giác ABC cân có AD là phân giác nên đồng thời là đường cao => AD vuông góc với BC
tg AEB = tg AEC [ cmt ]
=> EB= EC => tg BEC cân tại B , có AD là đường cao nên đồng thời là phân giác => ED là phan giác góc BEC
a) - Xét tam giác ABD và tam giác AED, có:
+ Chung AD
+ góc BAD = góc EAD (AD là tia phân giác của góc BAC)
+ AB = AE (gt)
=> tam giác ABD = tam giác AED (cgc)
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
b: Ta có: ΔABD=ΔAED
=>\(\widehat{ABD}=\widehat{AED}\) và DB=DE
Xét ΔAEF và ΔABC có
\(\widehat{AEF}=\widehat{ABC}\)
AE=AB
\(\widehat{EAF}\) chung
Do đó: ΔAEF=ΔABC
=>AC=AF
a: Xét ΔADB và ΔADE có
AD chung
góc BAD=góc EAD
AB=AE
=>ΔADB=ΔADE
=>góc ABD=góc AED
b: Xét ΔAEF vuông tại A và ΔABC vuông tại A có
AE=AB
góc AEF=góc ABC
=>ΔAEF=ΔABC
=>AC=AF