Nếu giảm chiều dài của một hình chữ nhật đi 2,4 cm và tăng chiều rộng lên 30% thì diện tích hình chữ nhật tăng thêm 4%. Tính kích thước ban đầu chiều dài của hình chữ nhật.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều rộng ban đầu là x(cm)(Điều kiện: x>0)
Chiều dài ban đầu là: 2x(cm)
Vì khi chiều rộng tăng 2cm thì diện tích tăng 4cm2 nên ta có phương trình:
\(2x\cdot\left(x+2\right)=2x^2+4\)
\(\Leftrightarrow2x^2+4x-2x^2-4=0\)
\(\Leftrightarrow4x=4\)
hay x=1(thỏa ĐK)
Chiều dài ban đầu là: \(2\cdot1=2\left(cm\right)\)
Vậy: Chiều rộng ban đầu là 1cm
Chiều dài ban đầu là 2cm
Lời giải:
Gọi chiều dài và chiều rộng ban đầu của hình chữ nhật lần lượt là $a$ và $b$ (m)
Theo bài ra ta có:
\(\left\{\begin{matrix} a-b=12\\ (a-8)(b+5)=ab-13\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=b+12\\ 5a-8b=27\end{matrix}\right.\Rightarrow 5(b+12)-8b=27\)
\(\Rightarrow b=11\) (m)
$a=b+12=23$ (m)
gọi chiều rộng ban đầu của mảnh vườn HCN là : x (m;x>5)
chiều dài ban đầu của mảnh vườn HCN là : x + 12 (m)
diện tích ban đầu là x.(x+12) (m2)
chiều rộng lúc sau của mảnh vườn HCN là : x + 5 (m)
chiều dài lúc sau của mảnh vườn HCN là x +12 - 8 = x +4
diện tích lúc sau là : (x+4).(x+5)
vì diện tích lúc sau giảm đi 13m2 nên ta có phương trình :
x(x+12) - (x+4)(x+5) = 13
\(x^2+12x-x^2-9x-20=13\)
\(3x-20=13\)
\(3x=33\)
\(x=11\)
giá trị x =11 thỏa mãn điều kiện của ẩn
chiều rộng ban đầu là : 11
chiều dài ban đầu là : 11+12 = 23
Gọi CD hcn ban đầu là a(...)
nửa C hcn là 30m
CR hcn ban đầu là 30-a (m)
độ dài CR sau khi tăng thêm là 35-a (m)
Độ dài CD sau khi giảm là a-2 (m)
diên tích hcn ban đầu là a ( 30 - a ) ( m2 )
diện tích hcn sau khi tăng CR giảm CD là ( a - 2 )( 35 - a )
Theo bài ra ta có pt
( a - 2 )( 35 - a ) -70 = a ( 30 - a )
Tự giải tiếp để tính ra CD CR và S hcn ban đầu
Gọi x (m) là chiều rộng (x > 0)
⇒ x + 5 (m) là chiều dài
Chiều rộng sau khi tăng: x + 2 (m)
Chiều dài sau khi giảm: x + 5 - 3 = x + 2 (m)
Diện tích lúc đầu: x(x + 5) = x² + 5x (m²)
Diện tích lúc sau: (x + 2)(x + 2) (m²)
Theo đề bài ta có phương trình:
x² + 5x - 16 = (x + 2)(x + 2)
⇔ x² + 5x - 16 = x² + 2x + 2x + 4
⇔ x² + 5x - x² - 2x - 2x = 4 + 16
⇔ x = 20 (nhận)
Vậy chiều rộng của hình chữ nhật là 20 m
Chiều dài của hình chữ nhật là 20 + 5 = 25 m
Gọi x, y lần lượt là độ dài của chiều dài và chiều rộng (\(0< y< x,x>5\) )
Theo đề, có:
\(\left\{{}\begin{matrix}x-y=5\\\left(x-3\right)\left(y+2\right)=xy-16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-y=5\\2x-3y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=25\\y=20\end{matrix}\right.\) (nhận)
Vậy kích thước lúc đầu của hình chữ nhật là: \(x.y=25.20=500\left(m^2\right)\)
Gọi chiều dài ban đầu là a (m), chiều rộng ban đầu là b (m) \(\left(0< a;b< 20\right)\)
Theo bài ra, ta có:
\(\hept{\begin{cases}a+b=20\\ab-\left(a+3\right)\left(b-5\right)=43\end{cases}}\Leftrightarrow\hept{\begin{cases}3a+3b=60\\ab-\left(ab-5a+3b-15\right)=43\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3a+3b=60\\5a-3b=28\end{cases}}\Leftrightarrow\hept{\begin{cases}8a=88\\3a+3b=60\end{cases}}\Leftrightarrow\hept{\begin{cases}a=11\\b=9\end{cases}}\) (thỏa mãn)
Vậy chiều dài ban đầu là 11 m và chiều rộng ban đầu là 9 m
Lời giải:
Gọi chiều dài và chiều rộng của hcn ban đầu lần lượt là $a,b$ (cm)
Theo bài ra ta có:
Diện tích ban đầu: $ab$ (cm2)
Diện tích sau khi thay đổi: $(a-2,4)b.1,3$ (cm2)
\((a-2,4)b.1,3=ab.1,04\)
\(\Leftrightarrow 1,3ab-3,12b=1,04ab\)
\(\Leftrightarrow 0,26ab=3,12b\)
\(\Leftrightarrow b(0,26a-3,12)=0\)
$\Leftrightarrow 0,26a-3,12=0$ (do $b\neq 0$)
$\Leftrightarrow a=12$ (cm)
Vậy chiều dài ban đầu là $12$ cm
Thank bạn nha