Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi CD khu vườn là a (m)
CR khu vườn là b (m) đk: a;b >0
Theo bài, ta có:
\(\left\{{}\begin{matrix}2\left(a+b\right)=56\\\left(a+3\right)\left(b-1\right)=ab+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=28\\3b-a=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=19\left(tm\right)\\b=9\left(tm\right)\end{matrix}\right.\)
Vậy.....
Gọi CD hcn ban đầu là a(...)
nửa C hcn là 30m
CR hcn ban đầu là 30-a (m)
độ dài CR sau khi tăng thêm là 35-a (m)
Độ dài CD sau khi giảm là a-2 (m)
diên tích hcn ban đầu là a ( 30 - a ) ( m2 )
diện tích hcn sau khi tăng CR giảm CD là ( a - 2 )( 35 - a )
Theo bài ra ta có pt
( a - 2 )( 35 - a ) -70 = a ( 30 - a )
Tự giải tiếp để tính ra CD CR và S hcn ban đầu
Lời giải:
Gọi chiều dài và chiều rộng mảnh đất lần lượt là $a,b$ (m)
Theo bài ra ta có:
$a+b=100:2=50$
$(a+5)(b-5)=ab+5$
$\Leftrightarrow 5b-5a-25=5$
$\Leftrightarrow b-a=6\Rightarrow b>a$.
Chiều rộng > chiều dài? Nghe rất vô lý. Bạn xem lại đề.
Gọi chiều dài ban đầu của khu vườn là: x(m) (x>0)
Vì chiều dài hơn chiều rộng 5m
→ Chiều rộng ban đầu của khu vườn là:x−5(m)
→ Diện tích ban đầu của khu vườn là: x(x−5)(m2)
Nếu giảm chiều dài 5m
→ Chiều dài lúc sau là: x−5(m)
Nếu tăng chiều rộng 3m
→ Chiều rộng lúc sau là: (x−5)+3=(x−2)(m)
→ Diện tích lúc sau của khu vườn là: (x−2)(x−5)(m2)
Sau khi giảm chiều dài 5m tăng chiều rộng 3m thì diện tích giảm 40m2
Ta có phương trình:
x(x−5)−40=(x−2)(x−5)
⇔x2−5x−40=x2−5x−2x+10
⇔x2−5x−40=x2−7x+10
⇔x2−5x−x2+7x=10+40
⇔2x=50
⇔x=25 (thỏa mãn)
Vậy chiều dài ban đầu của khu vườn là: 25m
Chiều rộng ban đầu của khu vườn là: 25−5=20m
Chu vi ban đầu khu vườn đó là :
( 25 + 20 ). 2 = 90 (m)
Diện tính ban đầu khu vườn đó là :
25.20 = 500 ( m2)
Vậy chiều dài ban đầu của khu vườn là: 25m
Chiều rộng ban đầu của khu vườn là: 25−5=20m
xin lỗi bạn nhé , máy mình bị nhảy phím nên bạn bỏ 2 câu cuối bị lặp nhé.
Lời giải:
Gọi chiều dài và chiều rộng ban đầu của hình chữ nhật lần lượt là $a$ và $b$ (m)
Theo bài ra ta có:
\(\left\{\begin{matrix} a-b=12\\ (a-8)(b+5)=ab-13\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=b+12\\ 5a-8b=27\end{matrix}\right.\Rightarrow 5(b+12)-8b=27\)
\(\Rightarrow b=11\) (m)
$a=b+12=23$ (m)
gọi chiều rộng ban đầu của mảnh vườn HCN là : x (m;x>5)
chiều dài ban đầu của mảnh vườn HCN là : x + 12 (m)
diện tích ban đầu là x.(x+12) (m2)
chiều rộng lúc sau của mảnh vườn HCN là : x + 5 (m)
chiều dài lúc sau của mảnh vườn HCN là x +12 - 8 = x +4
diện tích lúc sau là : (x+4).(x+5)
vì diện tích lúc sau giảm đi 13m2 nên ta có phương trình :
x(x+12) - (x+4)(x+5) = 13
\(x^2+12x-x^2-9x-20=13\)
\(3x-20=13\)
\(3x=33\)
\(x=11\)
giá trị x =11 thỏa mãn điều kiện của ẩn
chiều rộng ban đầu là : 11
chiều dài ban đầu là : 11+12 = 23
Gọi x là chiều dài ban đầu của hình chữ nhật
->y là chiều rộng ban đầu của hcn
ĐK:x,y>0
Vì chiều dài hơn chiều rộng 12m nên ta có phương trình : x = y+12
<=>x - y = 12 (1)
Vì nếu tăng chiều rộng 2m và giảm chiều dài 5m thì dt giảm 76m2 nên ta có pt : (x - 5) (y + 2) = xy - 76
<=>xy + 2x - 5y - 10 = xy - 76
<=>2x - 5y = -66 (2)
Từ (1),(2) ta có hệ pt:
x - y = 12
2x - 5y = -66
Bấm MODE 51 x = 42 ;y = 30
Vậy chiều dài bđ hcn là 42m
chiều rộng bđ hcn là 30m
cho tớ hỏi bạn anh nguyễn ngọc trâm , bắt đầu từ chỗ bật mode , cậu làm thế nào mà có thể tính ra phần sau ?
Các bạn ơi giúp mình tính chu vi và diện tích của bài trên được không?
Gọi chiều dài ban đầu là a (m), chiều rộng ban đầu là b (m) \(\left(0< a;b< 20\right)\)
Theo bài ra, ta có:
\(\hept{\begin{cases}a+b=20\\ab-\left(a+3\right)\left(b-5\right)=43\end{cases}}\Leftrightarrow\hept{\begin{cases}3a+3b=60\\ab-\left(ab-5a+3b-15\right)=43\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3a+3b=60\\5a-3b=28\end{cases}}\Leftrightarrow\hept{\begin{cases}8a=88\\3a+3b=60\end{cases}}\Leftrightarrow\hept{\begin{cases}a=11\\b=9\end{cases}}\) (thỏa mãn)
Vậy chiều dài ban đầu là 11 m và chiều rộng ban đầu là 9 m