K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2022

còn cái nịt

12 tháng 1 2022

ko giúp thì thôi

22 tháng 10 2023

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x< >1\end{matrix}\right.\)

\(A=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)

\(=\dfrac{x-1}{\sqrt{x}}:\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1+1-\sqrt{x}}\)

\(=\dfrac{x-1}{x-\sqrt{x}}\cdot\left(\sqrt{x}+1\right)\)

\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

b: \(x=\dfrac{2}{2+\sqrt{3}}=2\left(2-\sqrt{3}\right)=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)

Khi \(x=\left(\sqrt{3}-1\right)^2\) thì \(P=\dfrac{\left(\sqrt{3}-1+1\right)^2}{\sqrt{3}-1}=\dfrac{3}{\sqrt{3}-1}=\dfrac{3\left(\sqrt{3}+1\right)}{2}=\dfrac{3\sqrt{3}+3}{2}\)

c: \(P-2=\dfrac{x+2\sqrt{x}+1}{\sqrt{x}}-2\)

\(=\dfrac{x+2\sqrt{x}+1-2\sqrt{x}}{\sqrt{x}}=\dfrac{x+1}{\sqrt{x}}>0\)

=>P>2

20 tháng 12 2021

a: \(P=\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{2\sqrt{x}}{x\sqrt{x}-1}\)

20 tháng 12 2021

dạ sao làm hơi tắt ạ

29 tháng 7 2023

a) \(P=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(P=\left(\dfrac{x+2}{\left(\sqrt{x}\right)^3-1^3}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right)\cdot\dfrac{2}{\sqrt{x}-1}\)

\(P=\left(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\cdot\dfrac{2}{\sqrt{x}-1}\)\(P=\left(\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\cdot\dfrac{2}{\sqrt{x}-1}\)

\(P=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(P=\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}\)

\(P=\dfrac{2}{x+\sqrt{x}+1}\)

b) Mà với \(x\ge0\) và \(x\ne1\) thì 

\(x+\sqrt{x}+1\ge0\) và \(2>0\) nên \(P>0\)

a: \(P=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)^2}=\dfrac{2}{x+\sqrt{x}+1}\)

b: x+căn x+1+1>=1>0

2>0

=>P>0 với mọi x thỏa mãn x>=0 và x<>1

26 tháng 4 2022

\(a,=\dfrac{x+8\sqrt{x}+8-\left(\sqrt{x+2}\right)^2}{\sqrt{x}\left(\sqrt{x}+2\right)}:\dfrac{x+\sqrt{x}+3+\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x+8\sqrt{x}+8-x-4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{2\sqrt{x}+x+5}\)

\(=\dfrac{4\sqrt{x}-4}{2\sqrt{x}+x+5}\)

Vậy \(P=\dfrac{4\sqrt{x}-4}{2\sqrt{x}+x+5}\)

 

 

 

a: \(A=\dfrac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)

\(=\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\)

b: \(A-5=\dfrac{2x-4\sqrt{x}+2}{\sqrt{x}}=\dfrac{2\left(\sqrt{x}-1\right)^2}{\sqrt{x}}>=0\)

=>A>=5

10 tháng 8 2018

a. \(B=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\\ =\left(\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-1\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}-1}{2}\\ =\dfrac{\left(\sqrt{x}-1\right)^2.2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{2}{x+\sqrt{x}+1}\)

b.Ta có:

\(B=\dfrac{2}{x+\sqrt{x}+1}\). Mà \(\left[{}\begin{matrix}2>0\\x+\sqrt{x}+1=\left[\left(\sqrt{x}\right)^2+2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}\right]+\dfrac{3}{4}>0\end{matrix}\right.\)

Vậy B>0 \(\forall x\)

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b: Ta có: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\)

c: Ta có: \(x+\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ

\(\Leftrightarrow\dfrac{2}{x+\sqrt{x}+1}>0\forall x\)

23 tháng 10 2018

Chỗ câu a) là \(\dfrac{\left(\sqrt{x}-1\right)^2+4\sqrt{x}}{\sqrt{x}+1}-\dfrac{x-\sqrt{x}}{\sqrt{x}}=2\) á mọi người

28 tháng 10 2022

a: \(=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}-\sqrt{x}+1=\sqrt{x}+1-\sqrt{x}+1=2\)

b: \(=\dfrac{1}{\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{\sqrt{x}}\cdot\sqrt{x}\)

\(=\dfrac{1}{\sqrt{x}+1}-\sqrt{x}+1\)

\(=\dfrac{1+\left(-\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=\dfrac{1+1-x}{\sqrt{x}+1}=\dfrac{2-x}{\sqrt{x}+1}\)