(x^3-4x)^2+3x^2.|y-3|=0. Tìm x và y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b
\(\left|6+x\right|\ge0;\left(3+y\right)^2\ge0\Rightarrow\left|6+x\right|+\left(3+y\right)^2\ge0\)
Suy ra \(\left|6+x\right|+\left(3+y\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}6+x=0\\3+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-6\\y=-3\end{cases}}\)
a
Ta có:\(\left|3x-12\right|=3x-12\Leftrightarrow3x-12\ge0\Leftrightarrow3x\ge12\Leftrightarrow x\ge4\)
\(\left|3x-12\right|=12-3x\Leftrightarrow3x-12< 0\Leftrightarrow3x< 12\Leftrightarrow x< 4\)
Với \(x\ge4\) ta có:
\(3x-12+4x=2x-2\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=2\left(KTMĐK\right)\)
Với \(x< 4\) ta có:
\(12-3x+4x=2x-2\)
\(\Rightarrow10=x\left(KTMĐK\right)\)
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
(x3-4x)2+ 3x2.Iy-3I=0
ta thấy (x3-4x)2 luôn lớn hơn hoặc bằng 0
3x2.Iy-3I luôn lớn hơn hoặc bằng 0
vậy để (x3-4x)2+ 3x2.Iy-3I = 0 thì cả hai số hạng (x3-4x)2 và 3x2.Iy-3I phải cùng bằng 0
+) (x3-4x)2 =0
,<=> x3-4x=0 <=>x( x2-4)=0
<=> x = 0 , x = -2 và x = 2
+) 3x2.Iy-3I = 0
<=> x = 0 hoặc y-3 = 0 <=> y = 3
vậy các cặp (x; y) thỏa mãn là: (0;3) ; (-2;3) ; (2;3)
a) 5xy ( x - y ) - 2x + 2y
= 5xy ( x - y ) - 2 ( x - y )
= ( x - y ) ( 5xy - 2 )
b) 6x-2y-x(y-3x)
= 2 ( y - 3x ) - x ( y - 3x )
= ( y - 3x ( ( 2 - x )
c) x2 + 4x - xy-4y
= x ( x + 4 ) - y ( x + 4 )
( x + 4 ) ( x - y )
d) 3xy + 2z - 6y - xz
= ( 3xy - 6y ) + ( 2z - xz )
= 3y ( x - 2 ) + z ( x - 2 )
= ( x - 2 ) ( 3y + z )
a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)
b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)
c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)
d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)
11)
a,4-9x^2=0
(2-3x)(2+3x)=0
2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3
b,x^2 +x+1/4=0
(x+1/2)^2 =0
x+1/2=0
x=-1/2
c,2x(x-3)+(x-3)=0
(x-3)(2x+1)=0
x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2
d,3x(x-4)-x+4=0
3x(x-4)-(x-4)=0
(x-4)(3x-1)=0
x-4=0=>x=4 hoặc 3x-1=0=>x=1/3
e,x^3-1/9x=0
x(x^2-1/9)=0
x(x+1/3)(x-1/3)=0
x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3
f,(3x-y)^2-(x-y)^2 =0
(3x-y-x+y)(3x-y+x-y)=0
2x(4x-2y)=0
4x(2x-y)=0
x=0hoặc 2x-y=0=>x=y/2
Bài 1:
b: \(=\left(x-2y\right)\left(x+2y\right)+4\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y+4\right)\)
c: \(=\left(x+y-3\right)\left(x+y+3\right)\)
a, x/5-y/2
=> 3x/15=2y/4=3x-2y/15-4=44/11=4
+, x/5=4 => x=20
+, y/2=4 => y=8
c, 4x=3y
=> x/3=y/4=x-y=3-4=11/-1=-11
+, x/3=-11 => x=-33
+, y/4=-11 => y=-44
b: Ta có: \(\left(4x^4-3x^3\right):\left(-x^3\right)+\left(15x^2+6x\right):3x=0\)
\(\Leftrightarrow-4x+3+5x+2=0\)
\(\Leftrightarrow x=-5\)
ta thấy rằng \(\left(x^3-4x\right)^2\ge0;\)\(3x^2\ge0;\)\(\left|y-3\right|\ge0\) mà \(\left(x^3-4x\right)^2+3x^2.\left|y-3\right|=0\)
nên ta có 7 trường hợp:
trường hợp 1:
\(3x^2=0\)
\(x=0\)
\(\Rightarrow\left(0^3-4.0\right)^2+3.0^2.\left|y-3\right|=0\)(chọn)
trường hợp 2:
\(\left(x^3-4x\right)^2=0;3x^2=0\)
\(x=2;x=0\)(vô lí vì một số không thể có 2 giá trị)
trường hợp 3:
\(\left(x^3-4x\right)^2=0;3x^2=0;\left|y-3\right|=0\) thì cũng sẽ bị loại giống trường hợp 2
trường hợp 4:
\(3x^2=0;\left|y-3\right|=0\)(giống trường hợp 1)
trường hợp 5:
\(\left(x^3-4x\right)^2=0;\left|y-3\right|=0\)
\(\Rightarrow x=2;y=3\)
\(\Rightarrow\left(2^3-4.2\right)^2+3.2^2.\left|3-3\right|=0\)(chọn)
vậy \(x=2;y=3\)hoặc \(x=0;y\inℝ\)