Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2 :
tôi làm từng phần 1 nhé
bài 2 :
a)<=>(x+1)+3 chia hết x+4
=>3 chia hết x+4
=>x+4\(\in\){1,-1,3,-3}
=>x\(\in\){-3,-6,-1,-7}
b)6x+4 chia hết cho 2x-1
3(2x-1)+5 chia hết cho 2x-1
=>2x-1\(\varepsilon\)Ư(5)={+1;+5}
2x-1 | 1 | -1 | 5 | -5 |
x | 1 | 0 | 3 | -2 |
a, 2x-3 chia hết cho x+2
=>2x+4-7 chia hết cho x+2
=>2(x+2)-7 chia hết cho x+2
=>7 chia hết cho x+2
=>x+2 thuộc Ư(7)={1;-1;7;-7}
=>x thuộc {-1;-3;5;-9}
b, 6x+1 chia hết cho 5-4x
Vi 2(6x+1) chia hết cho 5-4x
3(5-4x )chia hết cho 5-4x
=>2(6x+1)+3(5-4x) chia hết cho 5-4x
=>12x+2+15-12x chia hết cho 5-4x
=>17 chia hết cho 5-4x
=>5-4x thuộc Ư(17)={1;-1;17;-17}
=>x thuộc {1;3/2;-3;11/2}
Vì x thuộc Z nên x thuộc {1;-3}
c, Đề pải là (x+3)(4-y)=7 chứ
=>x+3 và 4-y thuộc Ư(7)={1;-1;7;-7}
Ta có bảng:
x+3 | 1 | -1 | 7 | -7 |
4-y | 7 | -7 | 1 | -1 |
x | -2 | -4 | 4 | -10 |
y | 4 | -10 | -2 | -4 |
c, xy+2y+2x=1
<=>x(y+2)+2y+4=1+4
<=>x(y+2)+2(y+2)=5
<=>(x+2)(y+2)=5
=>x+2,y+2 thuộc Ư(5)={1;-1;5;-5}
Ta có bảng:
x+2 | 1 | -1 | 5 | -5 |
y+2 | 5 | -5 | 1 | -1 |
x | -1 | -3 | 3 | -7 |
y | 3 | -7 | -1 | -3 |
a, 2x - 3 chia hết cho x + 2
=> 2x + 4 - 7 chia hết cho x + 2
=> 2(x + 2) - 7 chia hết cho x + 2
=> 7 chia hết cho x+2
=>x+2 thuộc Ư(7)={1;-1;7;-7}
=>x thuộc {-1;-3;5;-9}
b, 6x+1 chia hết cho 5-4x
Vi 2(6x+1) chia hết cho 5-4x
3(5-4x )chia hết cho 5-4x
=>2(6x+1)+3(5-4x) chia hết cho 5-4x
=>12x+2+15-12x chia hết cho 5-4x
=>17 chia hết cho 5-4x
=>5-4x thuộc Ư(17)={1;-1;17;-17}
=>x thuộc {1;3/2;-3;11/2}
Vì x thuộc Z nên x thuộc {1;-3}
c, Đề pải là (x+3)(4-y)=7 chứ
=>x+3 và 4-y thuộc Ư(7)={1;-1;7;-7}
Ta có bảng:
x+3 | 1 | -1 | 7 | -7 |
4-y | 7 | -7 | 1 | -1 |
x | -2 | -4 | 4 | -10 |
y | 4 | -10 | -2 | -4 |
c, xy+2y+2x=1
<=>x(y+2)+2y+4=1+4
<=>x(y+2)+2(y+2)=5
<=>(x+2)(y+2)=5
=>x+2,y+2 thuộc Ư(5)={1;-1;5;-5}
Ta có bảng:
x+2 | 1 | -1 | 5 | -5 |
y+2 | 5 | -5 | 1 | -1 |
x | -1 | -3 | 3 | -7 |
y | 3 | -7 | -1 | -3 |
a, x + 2 chia het cho x-1
x-1 chia het cho x-1
=> (x+2) - (x-1) chia het cho x-1
Hay 3 chia het cho x-1
x-1 thuoc U(3)
x-1 thuoc {1;3}
Ta co bang
x-1 | 1 | 3 |
x | 2 | 4 |
Vay x thuoc {2;4}
a.
\(4x-8⋮2x+3\Rightarrow4x+6-14⋮2x+3\)
\(\Rightarrow2\left(2x+3\right)-14⋮2x+3\)
\(\Rightarrow14⋮2x+3\)
\(\Rightarrow2x+3=Ư\left(14\right)\)
Do \(2x+3\) luôn lẻ khi x nguyên nên ta chỉ cần xét các ước lẻ của 14
\(\Rightarrow2x+3=\left\{-7;-1;1;7\right\}\)
\(\Rightarrow x=\left\{-5;-2;-1;2\right\}\)
b.
\(2xy+4x-3y=17\)
\(\Leftrightarrow2xy-3y+4x-6=17-6\)
\(\Leftrightarrow y\left(2x-3\right)+2\left(2x-3\right)=11\)
\(\Leftrightarrow\left(2x-3\right)\left(y+2\right)=11\)
Bảng giá trị:
2x-3 | -11 | -1 | 1 | 11 |
y+2 | -1 | -11 | 11 | 1 |
x | -4 | 1 | 2 | 7 |
y | -3 | -13 | 9 | -1 |
Vậy \(\left(x;y\right)=\left(-4;-3\right);\left(1;-13\right);\left(2;9\right);\left(7;-1\right)\)
\(a,\) Vì \(2x⋮x\Rightarrow3⋮x\Rightarrow x\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(b,\left(8x+4\right)⋮\left(2x-1\right)\\ \Rightarrow\left[\left(8x-4\right)+8\right]⋮\left(2x-1\right)\\ \Rightarrow\left[4\left(2x-1\right)+8\right]⋮\left(2x-1\right)\)
\(Vì.4\left(2x-1\right)⋮\left(2x-1\right)\Rightarrow8⋮\left(2x-1\right)\Rightarrow\left(2x-1\right)\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
Ta có bảng:
2x-1 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
x | -3,5(loại) | -1,5(loại) | -0,5(loại) | 0 | 1 | 1,5(loại) | 2,5(loại) | 4,5(loại) |
Vậy \(x\in\left\{0;1\right\}\)
\(c,\left(x^2-x+7\right)⋮\left(x-1\right)\\ \Rightarrow\left[x\left(x-1\right)+7\right]⋮\left(x-1\right)\)
\(Vì.x\left(x-1\right)⋮\left(x-1\right)\Rightarrow7⋮\left(x-1\right)\Rightarrow x-1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng:
x-1 | -7 | -1 | 1 | 7 |
x | -6 | 0 | 2 | 8 |
Vậy \(x\in\left\{-6;0;2;8\right\}\)
Ai biết trả lời giúp mình với
x2 + 2x = 0
x(x + 2) = 0
=> x = 0 hoặc x + 2 = 0
=> x = 0 hoặc x = -2