giải hpt x+y+z=6 và xy+yz-zx=7 và x^2+y^2+z^2=14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. (x;y;z) = (2;2;2) . Đó là hpt đối xứng
2.(x;y;z) = (1;1;1) . Đây cũng là hpt đối xứng
Lời giải:
\(\Rightarrow (x+y+z)^2=x^2+y^2+z^2+2(xy+yz+xz)=36\)
Kết hợp với \(x^2+y^2+z^2=14\Rightarrow xy+yz+xz=11\)
Có \(\left\{\begin{matrix} xy+yz-xz=7\\ xy+yz+xz=11\end{matrix}\right.\Rightarrow \left\{\begin{matrix} xz=2\\ xy+yz=9\rightarrow y(6-x)=9\rightarrow y=3\rightarrow x+z=3\end{matrix}\right.\)
Từ \(\left\{\begin{matrix} xz=2\\ x+z=3\end{matrix}\right.\Rightarrow \left[ \begin{array}{ll} (x,z)=(2,1) \\ \\ (x,z)=(1,2) \end{array} \right.\)
Vậy HPT có nghiệm \((x,y,z)=(2,3,1),(1,3,2)\)
Nhân cả 2 vế của (2) với 2 ta được: \(2xy+2yx-2xz=14\left(4\right)\)
Lấy (3) trừ (4) ta được: \(x^2+y^2+z^2-2xy-2yx-2xz=0\)
\(\Leftrightarrow\left(x-y+z\right)^2=0\)
\(\Leftrightarrow y=x+z\)
Thay vào (1) ta được: \(y=x+z=3\)
Khi đó ta có hệ: \(\hept{\begin{cases}x+z=3\\x^2+y^2=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+z=3\\xz=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\z=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\z=1\end{cases}}\)
Vậy hệ đã cho có nghiệm: \(\left(1;3;2\right);\left(2;3;1\right)\)
Nhân 2 vế của (2) cho 2
2xy+2yz-xz=(-1).2
Why? bằng 14?
thế mà vẫn có người cho đúng
\(\left\{{}\begin{matrix}x+y+z=6\left(1\right)\\xy+yz-zx=7\\x^2+y^2+z^2=14\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}\left(x+y+z\right)^2=36\\xy+yz-xz=7\\x^2+y^2+z^2=14\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x^2+y^2+z^2+2\left(xy+yz+xz\right)=36\\xy+yz-xz=7\\x^2+y^2+z^2=14\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}14+2\left(xy+yz+xz\right)=36\\xy+yz-xz=7\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}xy+yz+xz=11\\xy+yz-xz=7\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}xy+yz=\frac{11+7}{2}=9\\xz=\frac{11-7}{2}=2\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}y\left(x+z\right)=9\\x=\frac{2}{z}\end{matrix}\right.\)
=>\(y\left(\frac{2}{z}+z\right)=9\)
<=> \(y=\frac{9}{\frac{2}{z}+z}=\frac{9}{\frac{2+z^2}{z}}=\frac{9z}{2+z^2}\)
Thay \(x=\frac{2}{z},y=\frac{9z}{2+z^2}\) vào (1) có:
\(\frac{2}{z}+\frac{9z}{2+z^2}+z=6\)
<=> \(\frac{2\left(2+z^2\right)+9z^2+z^2\left(2+z^2\right)}{z\left(2+z^2\right)}=6\)
<=>\(4+2z^2+9z^2+2z^2+z^4=6z\left(2+z^2\right)\)
<=> \(z^4+13z^2+4-12z-6z^3=0\)
<=> \(z^4-3z^3+2z^2-3z^3+9z^2-6z+2z^2-6z+4=0\)
<=>\(z^2\left(z^2-3z+2\right)-3z\left(z^2-3z+2\right)+2\left(z^2-3z+2\right)=0\)
<=> \(\left(z^2-3z+2\right)^2=0\)
<=> \(z^2-3z+2=0\)<=> \(z\left(z-2\right)-\left(z-2\right)=0\)
<=> \(\left(z-1\right)\left(z-2\right)=0\)
=>\(\left[{}\begin{matrix}z=1\\z=2\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\frac{2}{z}=2,y=\frac{9z}{2+z^2}=3\\x=1,y=3\end{matrix}\right.\)
Vậy (x,y,z) \(\in\left\{\left(2,3,1\right),\left(1,3,2\right)\right\}\)
Trả lời :
Bn Nguyễn Quyết Thắng trả lời luôn đi, nếu ko trả lời đc thì ko đc bình luận linh tinh nhé !
- Hok tốt !
^_^
x+y+z=6 (1) => (x + y + z)2 = 36 (4)
xy+yz-zx=7(2) <=> xy + yz + xz = 7 + 2xz <=> 2xy + 2yz + 2xz = 14 + 4xz (5)
x2+y2+z2=14 (3)
Cộng (5) với (3) theo vế với vế được: (x + y + z)2 = 28 + 4 xz <=> 36 = 28 + 4xz => xz = 2
Thay xz = 2 vào (2) => xy + yz = 9 <=> y (x + z) = 9=> x + z = 9/y (ykhác 0) Thay vào (1) ta có:
y + 9/y = 6 <=> y2 - 6y + 9 = 0<=> (y-3)2 = 0 => y= 3
Với y = 3 => x+ z = 9/3 = 3
Do đó x và z là nghiệm của PT: t2 - 3t + 2 = 0 => x=1; z = 2 hoặc x=2; z =1
Vậy HPT cho có 2 nghiệm (x;y;z) là (1; 3; 2) hoặc (2; 3; 1)
x+y+z=6 (1) => (x + y + z)2 = 36 (4)
xy+yz-zx=7(2) <=> xy + yz + xz = 7 + 2xz <=> 2xy + 2yz + 2xz = 14 + 4xz (5)
x2+y2+z2=14 (3)
Cộng (5) với (3) theo vế với vế được: (x + y + z)2 = 28 + 4 xz <=> 36 = 28 + 4xz => xz = 2
Thay xz = 2 vào (2) => xy + yz = 9 <=> y (x + z) = 9=> x + z = 9/y (ykhác 0) Thay vào (1) ta có:
y + 9/y = 6 <=> y2 - 6y + 9 = 0<=> (y-3)2 = 0 => y= 3
Với y = 3 => x+ z = 9/3 = 3
Do đó x và z là nghiệm của PT: t2 - 3t + 2 = 0 => x=1; z = 2 hoặc x=2; z =1
Vậy HPT cho có 2 nghiệm (x;y;z) là (1; 3; 2) hoặc (2; 3; 1)