Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm và đường cao AH. Tia phân giác của góc BAH cắt BH tại D. trên tia CA lấy điểm K sao cho CK = BC.
a) Chứng minh KB // AD.
b) Chứng minh KD vuông góc với BC.
c) Tính độ dài KB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét △ABC vuông tại A có
góc ABC+góc ACB=90 độ (Trong tam giac vuông, 2 góc nhọn phụ nhau)
Xét△AB vuông tại H, ta có
góc BAH+gócABC=90 độ
=>góc ACB=góc BAH( vì cùng +góc ABC =90 độ)
Xét tam giác CBK có CB=CK =>tam giác CBK cân tại C.
=> góc K=góc ABC
Ta có: ABC+CBK+C=180 độ
BKA=\(\dfrac{180-gócC}{2}\)(1)
Xét tam giácAHC vuông tạiH
=>HAC=90o-C
Do AD là tai phân giác của BAH =>BAD=DAH=\(\dfrac{BAH}{2}=\dfrac{C}{2}\)
Vì tai AH nằm giữa hai tia AD và AC nên:
DAC=DAH+HAC=\(\dfrac{C}{2}\)+90o-C
=C+\(\dfrac{C+180^{o^{ }}-2C}{2}\)=\(\dfrac{180^{o^{ }}-C}{2}\)(2)
Từ (1) và (2)=> DAC=BKA mà 2 góc này ở vị trí đồng vị nên KB song song với AD (đpcm)
1 phần thôi nhé
Nối BE, Gọi P là giao điểm của AD với BE.
Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).
Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)
Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)
Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác). (4)
Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB
<=> BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC
<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5)
Chú ý: Ta cm được: CA=CD (biến đổi góc).
Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)
=> DpCm.
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)