Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
B A H C M D
a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A
b) Xét \(\Delta\)ABH và\(\Delta\)DBH:
BAH=BDH=90
BH chung
AB=DB
=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC
c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM
Suy ra \(\Delta\)AMC cân tại M
2.
C B A H
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:
AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm
Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:
AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm
b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)
Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)
a)Xét △ABC vuông tại A có
góc ABC+góc ACB=90 độ (Trong tam giac vuông, 2 góc nhọn phụ nhau)
Xét△AB vuông tại H, ta có
góc BAH+gócABC=90 độ
=>góc ACB=góc BAH( vì cùng +góc ABC =90 độ)
Xét tam giác CBK có CB=CK =>tam giác CBK cân tại C.
=> góc K=góc ABC
Ta có: ABC+CBK+C=180 độ
BKA=\(\dfrac{180-gócC}{2}\)(1)
Xét tam giácAHC vuông tạiH
=>HAC=90o-C
Do AD là tai phân giác của BAH =>BAD=DAH=\(\dfrac{BAH}{2}=\dfrac{C}{2}\)
Vì tai AH nằm giữa hai tia AD và AC nên:
DAC=DAH+HAC=\(\dfrac{C}{2}\)+90o-C
=C+\(\dfrac{C+180^{o^{ }}-2C}{2}\)=\(\dfrac{180^{o^{ }}-C}{2}\)(2)
Từ (1) và (2)=> DAC=BKA mà 2 góc này ở vị trí đồng vị nên KB song song với AD (đpcm)