K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 1 2022

Không gian mẫu: \(7!\)

Hoán vị 3 đại biểu nam: 3! cách

3 đại biểu nam tạo ra 4 khe trống, xếp 4 đại biểu nữ vào 4 khe trống: \(A_4^4\) cách

Xác suất: \(P=\dfrac{3!.A_4^4}{7!}=...\)

30 tháng 5 2019

Chọn đáp án D.

1 tháng 10 2019

Đáp án C

5 tháng 10 2022

đáp án C

5 tháng 1 2017

31 tháng 1 2017

Đáp án đúng : D

24 tháng 8 2019

Chọn D.

Chọn ngẫu nhiên 4 đại biểu có: C 20 4  cách chọn.Chọn ra 4 đại biểu có đủ 3 nước dẫn đến 3 trường hợp:

1)    2A – 1B – 1C, 1A – 2B – 1C, 1A – 1B – 2C dẫn đến có C 6 2 . 7 . 7 + 6 . C 7 2 . 7 + 6 . 7 . C 7 2 = 2499  cách.

2)    Xét bài toán chọn 4 đại biểu đủ cả 3 nước mà toàn nam, dẫn đến các trường hợp:2A – 1B – 1C, 1A – 2B – 1C, 1A – 1B – 2C được C 4 2 . 5 . 5 + 4 . C 5 2 . 5 + 4 . 5 . C 5 2 = 550  cách.

3)    Xét bài toán chọn 4 người đủ cả 3 nước toàn nữ: tương tự ta được 12 cách.

4)    Vậy số trường hợp chọ được 4 đại biểu để mỗi nước đều có ít nhất một đại viểu và có cat đại biểu nam và đại biểu nữ là: 2499 – 550 – 12 = 1937

Vậy P= 1937 4845

7 tháng 1 2019

Chọn D

Số phần tử của không gian mẫu là: .

Gọi A là biến cố “chọn được 4 đại biểu sao cho mỗi Quốc gia đều có ít nhất 1 đại biểu và có cả đại biểu nam và nữ.”

Trường hợp 1: có 2  đại biểu Việt Nam, 1 đại biểu Mỹ, 1 đại biểu Anh.

Số cách chọn ra 4 đại biểu có cả đại biểu nam và đại biểu nữ thỏa mãn trường hợp 1 là: cách chọn.

Trường hợp 2: Có 1  đại biểu Việt Nam, 2 đại biểu Mỹ,1  đại biểu Anh.

Số cách chọn ra 4 đại biểu có cả đại biểu nam và đại biểu nữ thỏa mãn trường hợp 2 là:

Trường hợp 3: Có 1 đại biểu Việt Nam, 1 đại biểu Mỹ, 2 đại biểu Anh.

Số cách chọn ra 4 đại biểu có cả đại biểu nam và đại biểu nữ thỏa mãn trường hợp 3 là: .

Nên tổng số cách chọn thỏa mãn yêu cầu là: 581 + 678 + 678 = 1937.

 

Vậy xác suất của biến cố A là: .

3 tháng 5 2018

Chọn B

Số phần tử của không gian mẫu

Gọi A là biến cố: “chọn được 4 đại biểu để trong đó mỗi nước đều có 1 đại biểu và có cả đại biểu

nam và đại biểu nữ”

Số cách chọn 4 người đủ các nước tức là có một nước có 2 người, hai nước còn lại, mỗi nước 1 người là:.

Số cách chọn 4 người đủ các nước và toàn đại biểu nam là:

Số cách chọn 4 người đủ các nước và toàn đại biểu nữ là:

Số phần tử của A là n(A) = 2499- 12 - 550 = 1937

Xác suất của biến cố A: 

13 tháng 11 2017

Chọn B

Số phần tử của không gian mẫu là số cách sắp xếp 8 học sinh vào 8 chỗ ngồi khác nhau. Suy ra  n ( Ω ) = 8!

Gọi A là biến cố xếp 8 học sinh sao cho mỗi học sinh nam đều ngồi đối diện với một học sinh nữ và không có hai học sinh cùng giới ngồi cạnh nhau. Ta đánh số các chỗ ngồi từ 1 đến 8 như sau:

Dãy 1:

1

2

3

4

Dãy 2:

8

7

6

5

Để sắp xếp các học sinh ngồi vào vị trí thỏa mãn yêu cầu bài toán ta sắp xếp như sau:

Trường hợp 1: 4 học sinh nam ngồi vào các số lẻ, 4 học sinh nữ ngồi vào các số chẵn. Trường hợp này có 4!4! cách.

Trường hợp 2: 4 học sinh nam ngồi vào các số chẵn, 4 học sinh nữ ngồi vào các số lẻ. Trường hợp này có 414! cách.

Do đó n(A) = 2.4!.4!

Vậy xác suất của biến cố A là 

3 tháng 1 2019

Chọn A

Số cách để xếp người vào bàn tròn là : 7!=5040(cách)

Để xếp cho hai nữ không ngồi cạnh nhau, trước tiên ta xếp nam trước: 4!=24(cách)

Giữa nam có 5 chỗ trống, số cách để xếp 3 nữ vào 5 chỗ trống là: 

Vậy xác suất để xếp cho hai nữ không ngồi cạnh nhau là: