M=1/5+1/5.9+1/9.13+...+1/201.205
Ai giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{3}{5}+\dfrac{3}{5\cdot9}+\dfrac{3}{9\cdot13}+....+\dfrac{3}{97\cdot101}\)
\(=\dfrac{3}{4}\cdot\left(\dfrac{4}{5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+....+\dfrac{4}{97\cdot101}\right)\)
\(=\dfrac{3}{4}\cdot\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+....+\dfrac{1}{97}-\dfrac{1}{101}\right)\)
\(=\dfrac{3}{4}\cdot\left(1-\dfrac{1}{101}\right)\)
\(=\dfrac{3}{4}\cdot\dfrac{100}{101}\)
\(=\dfrac{75}{101}\)
\(b,\left(1+\dfrac{1}{2}\right)\cdot\left(1+\dfrac{1}{3}\right)\cdot\left(1+\dfrac{1}{4}\right)\cdot....\cdot\left(1+\dfrac{1}{99}\right)\)
\(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot....\cdot\dfrac{100}{99}\)
\(=\dfrac{100}{2}=50\)
Tính nhanh:
a) \(\dfrac{3}{5}+\dfrac{3}{5.9}+\dfrac{3}{9.13}+...+\dfrac{3}{97.101}\)
= \(\dfrac{3}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{97}-\dfrac{1}{101}\right)\)
= \(\dfrac{3}{4}\left(1-\dfrac{1}{101}\right)\)
= \(\dfrac{3}{4}\times\dfrac{100}{101}\)
= \(\dfrac{75}{101}\)
b) \(\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{4}\right)...\left(\dfrac{1}{98}+1\right)\left(\dfrac{1}{99}+1\right)\)
\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{99}{98}.\dfrac{100}{99}\)
\(=\dfrac{3.4.5...99.100}{2.3.4...98.99}\)
\(=\dfrac{100}{2}\)
\(=50\)
\(\frac{8}{1.5}+\frac{8}{5.9}+\frac{8}{9.13}+...+\frac{8}{x\left(x+4\right)}=\frac{1}{2}\)
\(\Leftrightarrow\)\(2\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{x\left(x+4\right)}\right)=\frac{1}{2}\)
\(\Leftrightarrow\)\(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{x}-\frac{1}{x+4}=\frac{1}{4}\)
\(\Leftrightarrow\)\(1-\frac{1}{x+4}=\frac{1}{2}\)
\(\Leftrightarrow\)\(\frac{x+4-1}{x+4}=\frac{1}{2}\)
\(\Leftrightarrow\)\(\frac{x+3}{x+4}=\frac{1}{2}\)
\(\Rightarrow\)\(2\left(x+3\right)=x+4\)
\(\Leftrightarrow\)\(2x+6=x+4\)
\(\Leftrightarrow\)\(x=-2\)
Vậy....
P/s: tham khảo mk ko chắc là đúng
Ta có:\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+......+\frac{1}{81.85}\)
\(=\frac{1}{4}\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+......+\frac{4}{81.85}\right)\)
\(=\frac{1}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+.......+\frac{1}{81}-\frac{1}{85}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{85}\right)\)
\(=\frac{1}{4}.\frac{84}{85}=\frac{21}{85}\)
\(A=\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{81.85}\)
Ta có công thức
\(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
\(\Rightarrow A=\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+..+\frac{1}{81}-\frac{1}{85}\right)\)
\(A=\frac{1}{4}.\left(1-\frac{1}{85}\right)\)
\(A=\frac{84}{340}\)
Ta có : \(\left(x-1\right)^2+\dfrac{1}{5.9}+\dfrac{1}{9.13}+...+\dfrac{1}{41.45}=\dfrac{49}{900}\)
\(\Leftrightarrow\left(x-1\right)^2+\dfrac{1}{4}.\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}\right)=\dfrac{49}{900}\)
\(\Leftrightarrow\left(x-1\right)^2+\dfrac{1}{4}\left(\dfrac{1}{5}-\dfrac{1}{45}\right)=\dfrac{49}{900}\)
\(\Leftrightarrow\left(x-1\right)^2=\dfrac{1}{100}\) \(\Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{10}\\x-1=-\dfrac{1}{10}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{10}\\x=\dfrac{9}{10}\end{matrix}\right.\)
Vậy ...
\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{41.45}\)
\(=\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{45}\right)\)
\(=\frac{1}{4}.\frac{44}{45}\)
\(=\frac{11}{45}\)
Đặt \(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+\frac{1}{13\cdot17}+...+\frac{1}{41\cdot45}\) là A.
Ta có:
\(A=\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+\frac{1}{13\cdot17}+...+\frac{1}{41\cdot45}\)
\(4A=4\left(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+\frac{1}{13\cdot17}+...+\frac{1}{41\cdot45}\right)\)
\(4A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+...+\frac{4}{41\cdot45}\)
\(4A=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}\)
\(4A=1-\frac{1}{45}\)
\(4A=\frac{44}{45}\)
\(A=\frac{44}{45}:4\)
\(A=\frac{11}{45}\)
Vậy \(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+\frac{1}{13\cdot17}+...+\frac{1}{41\cdot45}=\frac{11}{45}\)
1/1.5 + 1/5.9 + 1/9.13 + ... + 1/97.101
= 1/4.(4/1.5 + 4/5.9 + 4/9.13 + ... + 4/97.101)
= 1/4.(1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + ... + 1/97 - 1/101)
= 1/4.(1 - 1/101)
= 1/4.100/101
= 25/101
\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+........+\frac{1}{97.101}\)
\(=\frac{1}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+........+\frac{1}{97}-\frac{1}{101}\right)\)
\(=\frac{1}{4}\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{4}.\frac{100}{101}=\frac{25}{101}\)
\(S1=\dfrac{5}{10.11}+\dfrac{5}{11.12}+.............+\dfrac{5}{14.15}\)
\(\Leftrightarrow S1=5\left(\dfrac{1}{10.11}+\dfrac{1}{11.12}+...............+\dfrac{1}{14.15}\right)\)
\(\Leftrightarrow S1=5\left(\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+.............+\dfrac{1}{14}-\dfrac{1}{15}\right)\)
\(\Leftrightarrow S1=5\left(\dfrac{1}{10}-\dfrac{1}{15}\right)\)
\(\Leftrightarrow S1=5.\dfrac{1}{30}=\dfrac{1}{6}\)
\(S2=\dfrac{1}{5.9}+\dfrac{1}{9.13}+\dfrac{1}{13.17}+........+\dfrac{1}{21.25}\)
\(\Leftrightarrow4S_2=\dfrac{4}{5.9}+\dfrac{4}{9.13}+..............+\dfrac{4}{21.25}\)
\(\Leftrightarrow4S_2=\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+............+\dfrac{1}{21}-\dfrac{1}{25}\)
\(\Leftrightarrow4S_2=\dfrac{1}{5}-\dfrac{1}{25}\)
\(\Leftrightarrow4S_2=\dfrac{4}{25}\)
\(\Leftrightarrow S_2=\dfrac{16}{25}\)
\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{97.101}\)
\(=\frac{1}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{101}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{4}.\frac{100}{101}\)
\(=\frac{25}{101}\)
Nhân 4 rồi chia 4