K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2016

Nhân 4 rồi chia 4

15 tháng 6 2023

\(a,\dfrac{3}{5}+\dfrac{3}{5\cdot9}+\dfrac{3}{9\cdot13}+....+\dfrac{3}{97\cdot101}\)

\(=\dfrac{3}{4}\cdot\left(\dfrac{4}{5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+....+\dfrac{4}{97\cdot101}\right)\)

\(=\dfrac{3}{4}\cdot\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+....+\dfrac{1}{97}-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{4}\cdot\left(1-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{4}\cdot\dfrac{100}{101}\)

\(=\dfrac{75}{101}\)

\(b,\left(1+\dfrac{1}{2}\right)\cdot\left(1+\dfrac{1}{3}\right)\cdot\left(1+\dfrac{1}{4}\right)\cdot....\cdot\left(1+\dfrac{1}{99}\right)\)

\(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot....\cdot\dfrac{100}{99}\)

\(=\dfrac{100}{2}=50\)

15 tháng 6 2023

Tính nhanh:

a) \(\dfrac{3}{5}+\dfrac{3}{5.9}+\dfrac{3}{9.13}+...+\dfrac{3}{97.101}\)

\(\dfrac{3}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{97}-\dfrac{1}{101}\right)\)

\(\dfrac{3}{4}\left(1-\dfrac{1}{101}\right)\)

\(\dfrac{3}{4}\times\dfrac{100}{101}\)

\(\dfrac{75}{101}\)

b) \(\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{4}\right)...\left(\dfrac{1}{98}+1\right)\left(\dfrac{1}{99}+1\right)\)

\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{99}{98}.\dfrac{100}{99}\)

\(=\dfrac{3.4.5...99.100}{2.3.4...98.99}\)

\(=\dfrac{100}{2}\)

\(=50\)

26 tháng 4 2018

    \(\frac{8}{1.5}+\frac{8}{5.9}+\frac{8}{9.13}+...+\frac{8}{x\left(x+4\right)}=\frac{1}{2}\)

\(\Leftrightarrow\)\(2\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{x\left(x+4\right)}\right)=\frac{1}{2}\)

\(\Leftrightarrow\)\(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{x}-\frac{1}{x+4}=\frac{1}{4}\)

\(\Leftrightarrow\)\(1-\frac{1}{x+4}=\frac{1}{2}\)

\(\Leftrightarrow\)\(\frac{x+4-1}{x+4}=\frac{1}{2}\)

\(\Leftrightarrow\)\(\frac{x+3}{x+4}=\frac{1}{2}\)

\(\Rightarrow\)\(2\left(x+3\right)=x+4\)

\(\Leftrightarrow\)\(2x+6=x+4\)

\(\Leftrightarrow\)\(x=-2\)

Vậy....

P/s: tham khảo mk ko chắc là đúng

6 tháng 4 2017

Ta có:\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+......+\frac{1}{81.85}\)

\(=\frac{1}{4}\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+......+\frac{4}{81.85}\right)\)
\(=\frac{1}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+.......+\frac{1}{81}-\frac{1}{85}\right)\)

\(=\frac{1}{4}.\left(1-\frac{1}{85}\right)\)

\(=\frac{1}{4}.\frac{84}{85}=\frac{21}{85}\)

6 tháng 4 2017

\(A=\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{81.85}\)

Ta có công thức

\(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)

\(\Rightarrow A=\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+..+\frac{1}{81}-\frac{1}{85}\right)\)

\(A=\frac{1}{4}.\left(1-\frac{1}{85}\right)\)

\(A=\frac{84}{340}\)

8 tháng 4 2022

Ta có : \(\left(x-1\right)^2+\dfrac{1}{5.9}+\dfrac{1}{9.13}+...+\dfrac{1}{41.45}=\dfrac{49}{900}\)

\(\Leftrightarrow\left(x-1\right)^2+\dfrac{1}{4}.\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}\right)=\dfrac{49}{900}\)

\(\Leftrightarrow\left(x-1\right)^2+\dfrac{1}{4}\left(\dfrac{1}{5}-\dfrac{1}{45}\right)=\dfrac{49}{900}\)

\(\Leftrightarrow\left(x-1\right)^2=\dfrac{1}{100}\)  \(\Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{10}\\x-1=-\dfrac{1}{10}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{10}\\x=\dfrac{9}{10}\end{matrix}\right.\)

Vậy ...

9 tháng 12 2019

1/4(4/5.9+/9.13+...+4/41.45)

Tự túc nhé

9 tháng 12 2019

là sao bn

15 tháng 8 2018

\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{41.45}\)

\(=\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)\)

\(=\frac{1}{4}.\left(1-\frac{1}{45}\right)\)

\(=\frac{1}{4}.\frac{44}{45}\)

\(=\frac{11}{45}\)

15 tháng 8 2018

Đặt \(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+\frac{1}{13\cdot17}+...+\frac{1}{41\cdot45}\)  là A.

Ta có:

\(A=\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+\frac{1}{13\cdot17}+...+\frac{1}{41\cdot45}\)

\(4A=4\left(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+\frac{1}{13\cdot17}+...+\frac{1}{41\cdot45}\right)\)

\(4A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+...+\frac{4}{41\cdot45}\)

\(4A=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}\)

\(4A=1-\frac{1}{45}\)

\(4A=\frac{44}{45}\)

\(A=\frac{44}{45}:4\)

\(A=\frac{11}{45}\)

Vậy \(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+\frac{1}{13\cdot17}+...+\frac{1}{41\cdot45}=\frac{11}{45}\)

7 tháng 8 2016

1/1.5 + 1/5.9 + 1/9.13 + ... + 1/97.101

= 1/4.(4/1.5 + 4/5.9 + 4/9.13 + ... + 4/97.101)

= 1/4.(1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + ... + 1/97 - 1/101)

= 1/4.(1 - 1/101)

= 1/4.100/101

= 25/101

7 tháng 8 2016

\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+........+\frac{1}{97.101}\)

\(=\frac{1}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+........+\frac{1}{97}-\frac{1}{101}\right)\)

\(=\frac{1}{4}\left(1-\frac{1}{101}\right)\)

\(=\frac{1}{4}.\frac{100}{101}=\frac{25}{101}\)

24 tháng 8 2017

\(S1=\dfrac{5}{10.11}+\dfrac{5}{11.12}+.............+\dfrac{5}{14.15}\)

\(\Leftrightarrow S1=5\left(\dfrac{1}{10.11}+\dfrac{1}{11.12}+...............+\dfrac{1}{14.15}\right)\)

\(\Leftrightarrow S1=5\left(\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+.............+\dfrac{1}{14}-\dfrac{1}{15}\right)\)

\(\Leftrightarrow S1=5\left(\dfrac{1}{10}-\dfrac{1}{15}\right)\)

\(\Leftrightarrow S1=5.\dfrac{1}{30}=\dfrac{1}{6}\)

\(S2=\dfrac{1}{5.9}+\dfrac{1}{9.13}+\dfrac{1}{13.17}+........+\dfrac{1}{21.25}\)

\(\Leftrightarrow4S_2=\dfrac{4}{5.9}+\dfrac{4}{9.13}+..............+\dfrac{4}{21.25}\)

\(\Leftrightarrow4S_2=\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+............+\dfrac{1}{21}-\dfrac{1}{25}\)

\(\Leftrightarrow4S_2=\dfrac{1}{5}-\dfrac{1}{25}\)

\(\Leftrightarrow4S_2=\dfrac{4}{25}\)

\(\Leftrightarrow S_2=\dfrac{16}{25}\)

11 tháng 7 2016

\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{97.101}\)

\(=\frac{1}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{101}\right)\)

\(=\frac{1}{4}.\left(1-\frac{1}{101}\right)\)

\(=\frac{1}{4}.\frac{100}{101}\)

\(=\frac{25}{101}\)