K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 12 2021

\(A\le\sqrt{3\left(x+y+y+z+z+x\right)}=\sqrt{6\left(x+y+z\right)}\le\sqrt{6.\sqrt{3\left(x^2+y^2+z^2\right)}}=\sqrt{6\sqrt{3}}\)

\(A_{max}=\sqrt{6\sqrt{3}}\) khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)

Do \(x^2+y^2+z^2=1\Rightarrow0\le x;y;z\le1\)

\(\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\\z^2\le z\end{matrix}\right.\) \(\Rightarrow x+y+z\ge x^2+y^2+z^2=1\)

\(A^2=2\left(x+y+z\right)+2\sqrt{\left(x+y\right)\left(x+z\right)}+2\sqrt{\left(x+y\right)\left(y+z\right)}+2\sqrt{\left(y+z\right)\left(z+x\right)}\)

\(A^2=2\left(x+y+z\right)+2\sqrt{x^2+xy+yz+zx}+2\sqrt{y^2+xy+yz+zx}+2\sqrt{z^2+xy+yz+zx}\)

\(A^2\ge2\left(x+y+z\right)+2\sqrt{x^2}+2\sqrt{y^2}+2\sqrt{z^2}=4\left(x+y+z\right)\ge4\)

\(\Rightarrow A\ge2\)

\(A_{min}=2\) khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và các hoán vị

18 tháng 4 2021

Áp dụng BĐT cói cho 2 số ko âm ta có 

X^2+y^2 >= 2 .căn x^2 .y^2 = 2.xy= 2.6 =12 

Vậy P min =12 dấu = xảy ra khi x^2=y^2 <=> x=y 

( thông cảm mình gõ mũ ko đc ) 

11 tháng 3 2019

Truy cập link để nhận thẻ cào 50k free :

http://123link.vip/7K2YSHxh

Nhanh không cả hết !

4 tháng 10 2020

Ta có: \(x-y=x^2+xy+y^2\Rightarrow x^2+\left(y-1\right)x+\left(y^2+y\right)=0\)

Coi phương trình trên là phương trình bậc hai theo ẩn x thì \(\Delta=\left(y-1\right)^2-4\left(y^2+y\right)=-3y^2-6y+1\)

Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(-3y^2-6y+1\ge0\Rightarrow\frac{-3-2\sqrt{3}}{3}\le y\le\frac{-3+2\sqrt{3}}{3}\)

Mà y là số nguyên không âm nên y = 0

Thay y = 0 vào phương trình, ta được: \(x=x^2\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy (x, y) = { (0; 0); (1; 0) }

NV
20 tháng 4 2022

\(\left(x^2+9\right)+\left(y^2+9\right)+3\left(x^2+y^2\right)\ge6x+6y+6xy=90\)

\(\Rightarrow4\left(x^2+y^2\right)+18\ge90\)

\(\Rightarrow x^2+y^2\ge18\)

\(P_{min}=18\) khi \(x=y=3\)

\(x+y+xy=15\Rightarrow\left\{{}\begin{matrix}x\le15\\y\le15\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\left(x-15\right)\le0\\y\left(y-15\right)\le0\end{matrix}\right.\)

\(\Rightarrow x^2+y^2\le15x+15y\) (1)

Cũng từ đó ta có: \(\left(x-15\right)\left(y-15\right)\ge0\Rightarrow xy\ge15x+15y-225\)

\(\Rightarrow16x+16y-225\le x+y+xy=15\)

\(\Rightarrow x+y\le15\) (2)

(1);(2) \(\Rightarrow x^2+y^2\le15.15=225\)

\(P_{max}=225\) khi \(\left(x;y\right)=\left(0;15\right);\left(15;0\right)\)

29 tháng 8 2023

x2+xy=x+y+3

\(x^2+xy-x-y=3\)

⇔(\(x^2+xy\))−(\(x+y\))=3

\(x\left(x+y\right)-\left(x+y\right)\)=3

⇔(x−1)(x+y)=3

Vì x, y là các số nguyên nên x−1,x+ylà các số nguyên. 

Do đó (x−1)(x+y)=3=1.3=3.1=(−1).(−3)=(−3).(−1)

Ta có bảng sau:

x-1-3-113
x-2024
x+y-1-331
y1-31-3

Vậy phương trình có tập nghiệm: (x;y)=

(−2;1);(0;−3);(2;1);(4;−3)

 
1 tháng 1 2020

Ta có x + y = 2 ⇒ y = 2 - x ≥ 0 ⇒ 0 ≤ x ≤ 2 . Thay y = 2 - x và biểu thức P ta được

P = 1 3 x 3 + x 2 + 2 - x 2 - x + 1 = 1 3 x 3 + 2 x 2 - 5 x + 5 = f x

với  x ∈ 0 ; 2

Đạo hàm  f ' x = x 2 + 4 x - 5 = 0 ⇔ x = 1 x = - 5

Do x ∈ 0 ; 2  nên loại x = -5

f 1 = 7 3 ; f 0 = 5 ; f 2 = 17 3  

Vậy m i n x ∈ 0 ; 2 P = m i n x ∈ 0 ; 2 f x = 7 3  khi và chỉ khi x = 1

Đáp án B