K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x_0=\dfrac{10}{3}\)

\(\Leftrightarrow Q=3\cdot\dfrac{10}{3}-2=10-2=8\)

27 tháng 1 2017

Chọn C.

Điều kiện. x ≠ -1

Phương trình tương đương 

Lấy ln hai vế của , ta được 

Suy ra  x= 2 và P = 60.

31 tháng 7 2021

= x0(5 - x0)( x+ 8).

NV
1 tháng 7 2021

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=1\end{matrix}\right.\)

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=3^2-2.1=7\)

1 tháng 7 2021

\(x^2-3x+1=0\)

\(\Delta=\left(-3\right)^2-4=5>0\)

Áp dung hệ thức Viet: 

\(x_1+x_2=3\)

\(x_1\cdot x_2=1\)

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=3^2-2\cdot1=7\)

16 tháng 11 2021

\(F=x_1^2-3x_2-2013\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=-7\end{matrix}\right.\)

Vì \(x_1\) là nghiệm của PT nên \(x_1^2+3x_1-7=0\Leftrightarrow x_1^2=7-3x_1\)

\(\Leftrightarrow F=7-3x_1-3x_2-2013\\ F=-2006-3\left(x_1+x_2\right)=-2006-3\left(-3\right)=-1997\)

a) Ta có: \(2x^2-3x-2=0\)

nên a=2; b=-3 và c=-2

Vì \(x_1\) và \(x_2\) là nghiệm của phương trình \(2x^2-3x-2=0\) nên Áp dụng hệ thức Viet, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{3}{2}\\x_1\cdot x_2=-\dfrac{2}{2}=-1\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=-1\)

nên \(2\cdot x_1\cdot x_2=-2\)

Ta có: \(\left(x_1+x_2\right)^2=\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)

\(\Leftrightarrow x_1^2+x_2^2+2\cdot x_1\cdot x_2=\dfrac{9}{4}\)

\(\Leftrightarrow x_1^2+x_2^2=\dfrac{9}{4}+2=\dfrac{17}{4}\)

23 tháng 8 2017

Chọn C.

Ta có:  do đó phương trình

 hay 

22 tháng 9 2019

Đáp án D

Ta có

Khi đó 

a: a*c<0

=>(1) có hai nghiệm phân biệt

b: Bạn viết lại biểu thức đi bạn

13 tháng 1 2023

`1)` Ptr có: `\Delta=3^2-4.5.(-1)=29 > 0 =>`Ptr có `2` nghiệm phân biệt

 `=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=-3/5),(x_1.x_2=c/a=-1/5):}`

Có: `A=(3x_1+2x_2)(3x_2+x_1)`

     `A=9x_1x_2+3x_1 ^2+6x_2 ^2+2x_1x_2`

    `A=8x_1x_2+3(x_1+x_2)^2=8.(-1/5)+3.(-3/5)^2=-13/25`

Vậy `A=-13/25`

____________________________________________________

`2)` Ptr có: `\Delta'=(-1)^2-7.(-3)=22 > 0=>` Ptr có `2` nghiệm pb

 `=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2/7),(x_1.x_2=c/a=-3/7):}`

Có: `M=[7x_1 ^2-2x_1]/3+3/[7x_2 ^2-2x_2]`

     `M=[(7x_1 ^2-2x_1)(7x_2 ^2-2x_2)+9]/[3(7x_2 ^2-2x_2)]`

    `M=[49(x_1x_2)^2-14x_1 ^2 x_2-14x_1 x_2 ^2+4x_1x_2+9]/[3(7x_2 ^2-2x_2)]`

   `M=[49.(-3/7)^2-14.(-3/7)(2/7)+4.(-3/7)+9]/[3x_2(7x_2-2)]`

   `M=6/[x_2(7x_2-2)]`   `(1)`

Có: `x_1+x_2=2/7=>x_1=2/7-x_2`

 Thay vào `x_1.x_2=-3/7 =>(2/7-x_2)x_2=-3/7`

      `<=>-x_2 ^2+2/7 x_2+3/7=0<=>x_2=[1+-\sqrt{22}]/7`

`@x_2=[1+\sqrt{22}]/7=>M=6/[[1+\sqrt{22}]/7(7 .[1+\sqrt{22}]/2-2)]=2`

`@x_2=[1-\sqrt{22}]/7=>M=6/[[1-\sqrt{22}]/7(7 .[1-\sqrt{22}]/2-2)]=2`

Vậy `M=2`

3 tháng 12 2019






Chọn D