Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta nhận thấy tổng các hệ số của pt bậc 2 đã cho là \(1-a+a-1=0\) nên pt này có 1 nghiệm là 1, nghiệm kia là \(a-1\), nhưng do không được giải pt nên ta sẽ làm theo cách sau:
Ta thấy pt này luôn có 2 nghiệm phân biệt. Theo hệ thức Viète:
\(\left\{{}\begin{matrix}x_1+x_2=a\\x_1x_2=a-1\end{matrix}\right.\)
Vậy, \(M=\dfrac{3\left(x_1^2+x_2^2\right)-3}{x_1x_2\left(x_1+x_2\right)}\)
\(M=\dfrac{3\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-3}{a\left(a-1\right)}\)
\(M=\dfrac{3\left(a^2-2\left(a-1\right)\right)-3}{a\left(a-1\right)}\)
\(M=\dfrac{3\left[\left(a-1\right)^2-1\right]}{a\left(a-1\right)}\)
\(M=\dfrac{3a\left(a+2\right)}{a\left(a-1\right)}\)
\(M=\dfrac{3a+6}{a-1}\)
b) Ta có \(P=\left(x_1+x_2\right)^2-2x_1x_2=a^2-2\left(a-1\right)=\left(a-1\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow a=1\). Vậy để P đạt GTNN thì \(a=1\)
dầu tiên bn tìm đenta phẩy
sau đó cm nó lớn hơn 0
theo hệ thức viet tính đc x1+x2=... và x1*x2=....
thay vào hệ thức đã cho tính đc ..
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=\frac{5}{2}\\x_1x_2=\frac{c}{a}=-\frac{3}{2}\end{cases}}\)
Khi đó : A = ( x1 + 2x2 )( x2 + 2x1 ) = x1x2 + 2x12 + 2x22 + 4x1x2
= 5x1x2 + 2( x1 + x2 )2 - 4x1x2
= 2( x1 + x2 )2 + x1x2 = 2.(5/2)2 - 3/2 = 11
a) Ta có: \(\Delta'=\left(-m\right)^2+m+1=m^2+m+1=\left(m+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
=> pt luôn có 2 nghiệm phân biệt
Theo hệ thức viet, ta có: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m-1\end{cases}}\)
Theo bài ra, ta có: \(\hept{\begin{cases}S=2x_1+3x_2+3x_1+2x_2=5\left(x_1+x_2\right)=5.2m=10m\\P=\left(2x_1+3x_2\right)\left(3x_1+2x_2\right)=6x_1^2+13x_1x_2+6x_2^2=6\left(x_1+x_2\right)^2+x_1x_2\end{cases}}\)
\(\hept{\begin{cases}S=10m\\P=6.\left(2m\right)^2-m-1=24m^2-m-1\end{cases}}\)
Hai nghiệm 2x1 + 3x2 và 3x1 + 2x2 là nghiệm của pt \(x^2-10mx+24m^2-m-1=0\)
b) Theo bài ra, ta có:
\(\left|2x_1+3x_2\right|+\left|3x_1+2x_2\right|=30\)
<=> \(\left(2x_1+3x_2\right)^2+\left(3x_1+2x_2\right)^2+2\left|\left(2x_1+3x_2\right)\left(3x_1+2x_2\right)\right|=900\)
<=> \(\left(2x_1+3x_2+3x_1+2x_2\right)^2-2\left(2x_1+3x_2\right)\left(3x_1+2x_2\right)+2\left|24m^2-m-1\right|=900\)
<=> \(\left(10m\right)^2-2\left(24m^2-m-1\right)+2\left|24m^2-m-1\right|=900\)
<=> \(52m^2+2m+2+2\left|24m^2-m-1\right|=900\)
<=> \(\left|24m^2-m-1\right|=449-26m^2-m\)
<=> \(\orbr{\begin{cases}24m^2-m-1=449-26m^2-m\left(đk:m\ge\frac{1+\sqrt{97}}{48}hoặcx\le\frac{1-\sqrt{97}}{48}\right)\\24m^2-m-1=26m^2+m-449\left(đk:\frac{1-\sqrt{97}}{48}\le x\le\frac{1+\sqrt{97}}{48}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}50m^2=1\\2m^2+2m-448=0\end{cases}}\)<=> \(\orbr{\begin{cases}m=\pm\frac{1}{5\sqrt{2}}\\m^2+m-224=0\end{cases}}\) (\(\orbr{\begin{cases}m=\frac{1}{5\sqrt{2}}\left(ktm\right)\\m=-\frac{1}{5\sqrt{2}}\left(tm\right)\end{cases}}\))
<=> \(m^2+m-224=0\)(có 2 nghiệm ko thõa mãn -> tự tính)
a) \(\Delta'=m^2+m+1>0\forall m\). Do đó phương trình cho luôn có hai nghiệm phân biệt
Khi đó, theo hệ thức Viet: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m-1\end{cases}}\)
Suy ra \(\hept{\begin{cases}5\left(x_1+x_2\right)=10m\\\left(2x_1+3x_2\right)\left(3x_1+2x_2\right)=6\left(x_1+x_2\right)^2+x_1x_2=24m^2-m-1\end{cases}}\)
Áp dụng định lí Viet đảo ta có được phương trình:
\(X^2-10mX+24m^2-m-1=0\left(1\right)\) nhận \(2x_1+3x_2\) và \(3x_1+2x_2\) làm nghiệm.
b) Để \(\left(1\right)\) có nghiệm thì \(100m^2\ge4\left(24m^2-m-1\right)\Leftrightarrow4m^2+4m+4\ge0\left(đ\right)\)
Ta có \(\left|X_1\right|+\left|X_2\right|=30\Leftrightarrow\left(X_1+X_2\right)^2-2X_1X_2+2\left|X_1X_2\right|-900=0\)
\(\Rightarrow100m^2-2\left(24m^2-m-1\right)+2\left|24m^2-m-1\right|+900=0\)
+) Nếu \(24m^2-m-1\ge0\) thì \(100m^2+900=0\Leftrightarrow m=\pm3\)
+) Nếu \(24m^2-m-1< 0\) thì \(4m^2+4m+904=0\)(Vô nghiệm)
Vậy \(m=\pm3.\)
Do \(x_1;x_2\) là hai nghiệm của pt nên ta có những điều sau:
\(x_1+x_2=5\) ; \(x_1x_2=-1\); \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=27\)
\(x_1^2-5x_1-1=0\Rightarrow x_1^2+3x_1-2=8x_1-1\)
Tương tự: \(x_2^2+3x_2-2=8x_2-1\)
\(x_1^2+2x_1=7x_1+1\Rightarrow x_1^3+2x_1^2=7x_1^2+x_1\)
Tương tự: \(x_2^3+2x_2^2=7x_2^2+x_2\)
Thay vào:
\(M=\left(8x_1-1\right)\left(8x_2-1\right)=64\left(x_1x_2\right)-8\left(x_1+x_2\right)+1=...\)
\(N=\left(7x_1^2+x_1-1\right)\left(7x_2^2+x_2-1\right)\)
\(N=49\left(x_1x_2\right)^2+7x_1x_2\left(x_1+x_2\right)-7\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)+1\)
Bạn tự thay số
\(\Delta=b^2-4ac=m^2+16\)
=> Pt luôn có 2 nghiệm phân biệt
Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1\cdot x_2=\frac{c}{a}=-4\end{cases}}\)
Thay vào A ta được : \(A=\frac{2m+7}{m^2+8}\)
=> Min A = -1/8 khi m=-8
`1)` Ptr có: `\Delta=3^2-4.5.(-1)=29 > 0 =>`Ptr có `2` nghiệm phân biệt
`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=-3/5),(x_1.x_2=c/a=-1/5):}`
Có: `A=(3x_1+2x_2)(3x_2+x_1)`
`A=9x_1x_2+3x_1 ^2+6x_2 ^2+2x_1x_2`
`A=8x_1x_2+3(x_1+x_2)^2=8.(-1/5)+3.(-3/5)^2=-13/25`
Vậy `A=-13/25`
____________________________________________________
`2)` Ptr có: `\Delta'=(-1)^2-7.(-3)=22 > 0=>` Ptr có `2` nghiệm pb
`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2/7),(x_1.x_2=c/a=-3/7):}`
Có: `M=[7x_1 ^2-2x_1]/3+3/[7x_2 ^2-2x_2]`
`M=[(7x_1 ^2-2x_1)(7x_2 ^2-2x_2)+9]/[3(7x_2 ^2-2x_2)]`
`M=[49(x_1x_2)^2-14x_1 ^2 x_2-14x_1 x_2 ^2+4x_1x_2+9]/[3(7x_2 ^2-2x_2)]`
`M=[49.(-3/7)^2-14.(-3/7)(2/7)+4.(-3/7)+9]/[3x_2(7x_2-2)]`
`M=6/[x_2(7x_2-2)]` `(1)`
Có: `x_1+x_2=2/7=>x_1=2/7-x_2`
Thay vào `x_1.x_2=-3/7 =>(2/7-x_2)x_2=-3/7`
`<=>-x_2 ^2+2/7 x_2+3/7=0<=>x_2=[1+-\sqrt{22}]/7`
`@x_2=[1+\sqrt{22}]/7=>M=6/[[1+\sqrt{22}]/7(7 .[1+\sqrt{22}]/2-2)]=2`
`@x_2=[1-\sqrt{22}]/7=>M=6/[[1-\sqrt{22}]/7(7 .[1-\sqrt{22}]/2-2)]=2`
Vậy `M=2`