K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
9 tháng 1 2022

ta có 

\(x^2-12x+36+5x\left(x-6\right)=0\Leftrightarrow\left(x-6\right)^2+5x\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(6x-6\right)=0\Leftrightarrow\orbr{\begin{cases}x=6\\x=1\end{cases}}\)

9 tháng 1 2022

Answer:

\(x^2-12x+36+5x\left(x-6\right)=0\)

\(\Rightarrow x^2-12x+36+5x^2-30x=0\)

\(\Rightarrow6x^2-42x+36=0\)

\(\Rightarrow6x^2-36x-6x+36=0\)

\(\Rightarrow6x\left(x-6\right)-6\left(x-6\right)=0\)

\(\Rightarrow\left(x-6\right)\left(6x-6\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-6=0\\6x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=6\\x=1\end{cases}}}\)

18 tháng 11 2017

\(=\left(x^3+x^2\right)-\left(7x^2+7x\right)+\left(19x+19\right)=\left(x+1\right)\left(x^2-7x+19\right)=0\)

Ta thấy:  \(x^2-7x+19=x^2-2\times\frac{7}{2}x+\frac{7}{2}^2+\frac{27}{4}=\left(x-\frac{7}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}\)lớn hơn 0

\(\Rightarrow x+1=0\Rightarrow x=-1\)

18 tháng 11 2017

\(x^3-6x^2+12x+19=0\)

\(\Leftrightarrow\left(x^3+x^2\right)-\left(7x^2+7x\right)+\left(19x+19\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-7x+19\right)=0\)

Mà \(x^2-7x+19>0\)với \(\forall x\)

\(\Rightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy \(x=-1\)

27 tháng 10 2021

\(\Leftrightarrow\left(x+2\right)^2\cdot\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)

27 tháng 10 2021

\(\Leftrightarrow x^3+5x^2+8x+4=0\\ \Leftrightarrow\left(x+1\right)\left(x+2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)

13 tháng 6 2021

`a)(x-6)^2-(x+6)^2=12`

`<=>(x-6-x-6)(x-6+x+6)=12`

`<=>-12.2x=12`

`<=>2x=-1`

`<=>x=-1/2`

Vậy `x=-1/2`

`b)36x^2-12x+1=81`

`<=>(6x-1)^2=81`

`<=>(6x-1-9)(6x-1+9)=0`

`<=>(6x-10)(6x+8)=0`

`<=>(3x-5)(3x+4)=0`

`<=>` \(\left[ \begin{array}{l}x=\dfrac53\\x=-\dfrac43\end{array} \right.\) 

`c)x^2-4x-12=0`

`<=>x^2-6x+2x-12=0`

`<=>x(x-6)+2(x-6)=0`

`<=>(x-6)(x+2)=0`

`<=>` \(\left[ \begin{array}{l}x=-2\\x=6\end{array} \right.\) 

`d)x^2-5x-6=0`

`<=>x^2-6x+x-6=0`

`<=>x(x-6)+x-6=0`

`<=>(x-6)(x+1)=0`

`<=>` \(\left[ \begin{array}{l}x=6\\x=-1\end{array} \right.\) 

10 tháng 12 2019

Bài 1: 

a: \(\Leftrightarrow x^2-5x+6< =0\)

=>(x-2)(x-3)<=0

=>2<=x<=3

b: \(\Leftrightarrow\left(x-6\right)^2< =0\)

=>x=6

c: \(\Leftrightarrow x^2-2x+1>=0\)

\(\Leftrightarrow\left(x-1\right)^2>=0\)

hay \(x\in R\)

a, 4x2 - 49 = 0

⇔⇔ (2x)2 - 72 = 0

⇔⇔ (2x - 7)(2x + 7) = 0

⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72

b, x2 + 36 = 12x

⇔⇔ x2 + 36 - 12x = 0

⇔⇔ x2 - 2.x.6 + 62 = 0

⇔⇔ (x - 6)2 = 0

⇔⇔ x = 6

e, (x - 2)2 - 16 = 0

⇔⇔ (x - 2)2 - 42 = 0

⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0

⇔⇔ (x - 6)(x + 2) = 0

⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2

f, x2 - 5x -14 = 0

⇔⇔ x2 + 2x - 7x -14 = 0

⇔⇔ x(x + 2) - 7(x + 2) = 0

⇔⇔ (x + 2)(x - 7) = 0

⇔{x+2=0x−7=0⇔{x=−2x=7

7 tháng 1 2016

b) 5x.(-x)2 + 1 = 6

=> 5.x.x2 = 6 - 1

=> 5.x3 = 5

=> x3 = 5:5

=> x3 = 1

=> x = 1

7 tháng 1 2016

a) 3x2 + 12x = 0

=> 3x(x + 4) = 0

=> x(x + 4) = 0

=> x = 0 hoặc x + 4 = 0 

+) x = 0

+) x + 4 = 0 => x = -4

Vậy: x \(\in\){0;-4}

17 tháng 12 2016

Câu 1:

 \(x^4+5x^3-12x^2+5x+1=x^4+7x^3+x^2-2x^3-14x^2-x+x^2+7x+1\)

\(=\left(x^4+7x^3+x^2\right)-\left(2x^3+14x^2+x\right)+\left(x^2+7x+1\right)\)

\(=x^2\left(x^2+7x+1\right)-2x\left(x^2+7x+1\right)+\left(x^2+7x+1\right)\)

\(=\left(x^2-2x+1\right)\left(x^2+7x+1\right)\)

\(=\left(x-1\right)^2\left(x^2+7x+1\right)\)

Câu 2:

\(\left(x-3\right)\left(x-5\right)\left(x-6\right)\left(x-10\right)-24x^2=x^4-24x^3+203x^2-720x+900-24x^2\)

\(=x^4-24x^3+179x^2-720x+900\)

\(=\left(x^4-7x^3+30x^2\right)-\left(17x^3-119x^2+510x\right)+\left(30x^2-210x+900\right)\)

\(=x^2\left(x^2-7x+30\right)-17x\left(x^2-7x+30\right)+30\left(x^2-7x+30\right)\)

\(=\left(x^2-17x+30\right)\left(x^2-7x+30\right)\)

\(=\left(x^2-2x-15x+30\right)\left(x^2-7x+30\right)\)

\(=\left[x\left(x-2\right)-15\left(x-2\right)\right]\left(x^2-7x+30\right)\)

\(=\left(x-15\right)\left(x-2\right)\left(x^2-7x+30\right)\)

Câu 3:

\(2x^3+11x^2+3x-36=\left(2x^3+14x^2+24x\right)-\left(3x^2+21x+36\right)\)

\(=2x\left(x^2+7x+12\right)-3\left(x^2+7x+12\right)\)

\(=\left(2x-3\right)\left(x^2+7x+12\right)\)

\(=\left(2x-3\right)\left(x^2+3x+4x+12\right)\)

\(=\left(2x-3\right)\left[x\left(x+3\right)+4\left(x+3\right)\right]\)

\(=\left(2x-3\right)\left(x+3\right)\left(x+4\right)\)

13 tháng 7 2021

1. 

\(\left(12x^2+6x\right)\left(y+z\right)+\left(12x^2+6x\right)\left(y-z\right)\\ =\left(12x^2+6x\right)\left(y+z+y-z\right)\\ =2y\left(12x^2+6x\right)\\ =2y.6x\left(2x+1\right)\\ =12xy\left(2x+1\right)\)

2. 

\(x\left(x-6\right)+10\left(x-6\right)=0\\ \Leftrightarrow\left(x-6\right)\left(x+10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-10\end{matrix}\right.\)

Vậy \(x\in\left\{6;-10\right\}\) là nghiệm của pt

Bài 1:

Ta có: \(\left(12x^2+6x\right)\left(y+z\right)+\left(12x^2+6x\right)\left(y-z\right)\)

\(=\left(12x^2+6x\right)\left(y+z+y-z\right)\)

\(=6x\left(2x+1\right)\cdot2y\)

\(=12xy\left(2x+1\right)\)

Bài 2: 

Ta có: \(x\left(x-6\right)+10\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-10\end{matrix}\right.\)