Tính tổng:
S = 1 + 1/2 . (1 + 2) + 1/3 . (1 + 2 + 3) + 1/4 . (1 + 2 + 3 + 4) + ... + 1/100 . (1 + 2 + 3 + ... + 99 + 100).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(S=\dfrac{1}{2+\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)
\(=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)
A = \(\dfrac{100-(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{99}{100}}\)
Xét các mẫu số của dãy phân số : \(\dfrac{1}{1};\dfrac{1}{2};....;\dfrac{1}{100}\)
ta có dãy số: 1; 2; ....;100
Dãy số trên có số số hạng là: ( 100 - 1) : 1 + 1 = 100 (số)
Tách 100 thành tổng của 100 số 1 rồi nhóm lần lượt 1 với từng phân số thuộc dãy phân số trên khi đó ta có:
A = \(\dfrac{100-(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.....+\dfrac{99}{100}}\)
A = \(\dfrac{(1-1)+(1-\dfrac{1}{2})+(1-\dfrac{1}{3})+....+(1-\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.....+\dfrac{99}{100}}\)
A = \(\dfrac{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+....+\dfrac{99}{100}}\)
A = 1
S= 1/1.2 + 1/2.3 + 1/3.4+...+ 1/99.100
=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100
=99/100
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(S=1-\frac{1}{100}\)
\(S=\frac{99}{100}\)
1. 1 + ( -2) +3 +(-4) + .........+ 19 + (-20)
= -1 + ( -1) +....+(-1)
= -1. 10
= -10
2. 1 – 2 + 3 – 4 + . . . + 99 – 100
= ( -1) + (-1) +....+(-1)
= -1. 50
= -50
3. 2 – 4 + 6 – 8 + . . . + 48 – 50
= (-2) + (-2) +....+ (-2)
= -2. 12 + 26
= -24 + 26
= 2
4. – 1 + 3 – 5 + 7 - . . . . + 97 – 99
= 2 + 2 +......+2
= 2.25
= 50
5. 1 + 2 – 3 – 4 + ... + 97 + 98 – 99 - 100
= (1+2-3-4) +......+ ( 97+98-99 -100)
= -4 . (-4).....(-4)
= -4. 25
= -100
Cấu a:G/s các số hạng đề là dương
số số hạng của dãy là :(100-1):1+1=100 số
ta thấy 2 số liền kề nhau có tổng =1
==> có 100:2=50 cặp
==> tổng là 1x50=50
câu 2 bạn lầm giống câu 1
mk bó tay sorry
456547
Bạn nhìn thì cũng không quá khó để nhận ra quy luật trong S
\(\frac{1}{1},\)\(\frac{1+2}{2},\)\(\frac{1+2+3}{3},\)\(\frac{1+2+3+4}{4},\)..., \(\frac{1+2+...+100}{100},\)
Công thức tính tổng \(1+2+3+..+n\)(với \(n\)là số nguyên dương) là \(\frac{n\cdot\left(n+1\right)}{2}\)
Vì vậy mỗi số hạng trong \(S\)có thể rút gọn thành \(\frac{1+2+3+...+n}{n}=\frac{\frac{n\left(n+1\right)}{2}}{n}=\frac{n+1}{2}\)
Do đó
\(S=\frac{\left(1+1\right)}{2}+\frac{\left(2+1\right)}{2}+\frac{\left(3+1\right)}{2}+..+\frac{\left(100+1\right)}{2}=\frac{1}{2}\left(2+3+4+..+101\right)\)
\(S=\frac{1}{2}\left(\frac{101\cdot102}{2}-1\right)=2575\)
Chúc bạn học tốt!
(P/S : giải thích dòng cuối : Tổng từ 2 tới 101? Lấy tổng từ 1 tới 101 rồi trừ đi 1 nếu không nhớ cách làm của Gauss nha, không thì cứ nhớ câu này "Dĩ đầu cộng vĩ, chiết bán nhân chi" (lấy đầu cộng cuối, chia 2, nhân số số hạng))