Hãy chứng minh rằng số 111222 là tích của 2 số tự nhiên liên tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)
gọi 2 số chẳn liên tiếp là 2k ;2k+2 (k thuộc N)
ta có \(2k.\left(2k+2\right)=2k.2k+2k.2\)
\(=2.2.k.k+4k\)
\(=4k^2+4k\)
mà \(4k^2+4k\) chia hết cho 4
=>\(2k.\left(2k+2\right)\) chia hết cho 4
a)Goi 2 so tu nhien lien tiep la a;a+1
Neu a la so chan:a.(a+1) la so chan hay a.(a+1) chia het cho 2
Neu a la so le:a+1 la so le
Vay tich2 so tu nhien lien tiep chia het cho 2
Gọi 4 số tự nhiên liên tiếp là n, n + 1, n + 2, n + 3 (n ∈ Z).
Ta có n(n + 1)(n + 2)(n + 3) + 1 = n(n + 3)(n + 1)(n + 2) + 1
= (n2 + 3n)(n2 + 3n + 2) + 1 (*)
Đặt n2 + 3n = t (t ∈ N) thì (*) = t(t + 2) + 1 = t2 + 2t + 1 = (t + 1)2
= (n2 + 3n + 1)2
Vì n ∈ N nên n2 + 3n + 1 ∈ N.
Vậy n(n + 1)(n + 2)(n + 3) là số chính phương
Gọi 4 số tự nhiên liên tiếp là \(n;n+1;n+2;n+3\left(n\in N\right)\)
Theo đề bài, ta có :
\(n\cdot\left(n+1\right)\cdot\left(n+2\right)\cdot\left(n+3\right)+1\)
\(=\left[n\cdot\left(n+3\right)\right]\cdot\left[\left(n+1\right)\cdot\left(n+2\right)\right]\)
\(=\left[n^2+3n\right]\cdot\left[n^2+3n+2\right]+1\)( * )
Đặt \(n^2+3n=t\)thì ( * ) \(=t\cdot\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\)
Vậy tích của 4 số tự nhiên liên tiếp cộng cho 1 là số chính phương
a) Ta có:
\(10^{10}=10...0\Rightarrow10^{10}-1=10..0-1=9..99\)
Nên \(10^{10}-1\) ⋮ 9
b) Ta có:
\(10^{10}=10...0\Rightarrow10^{10}+2=10..0+2=10..2\)
Mà: \(1+0+0+...+2=3\) ⋮ 3
Nên: \(10^{10}+2\) ⋮ 3
Gọi 3 số đó lần lượt là x-1;x;x+1
(x-1)x+x(x+1)+(x+1)(x-1)=26
<=>x2-x+x2+x+x2-1=26
<=>3x2-1=26
<=>3x2=27
<=>x2=9
<=>x=3
Vậy 3 số đó lần lượt là 2;3;4