Tính tổng sau:
4.5100(1 phần 52+1 phần 53 +1 phần 54+...+1 phần 5100) +1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài thiếu yêu cầu cụ thể em nhé. em cập nhật lại câu hỏi để được sự hỗ trợ tốt nhất cho tài khoản olm vip
Ta có :
\(\frac{1}{51}\)> \(\frac{1}{100}\)
\(\frac{1}{52}\)> \(\frac{1}{100}\)
...
\(\frac{1}{99}\)> \(\frac{1}{100}\)
\(\frac{1}{100}\)= \(\frac{1}{100}\)
=> S > 50 x \(\frac{1}{100}\)
=> S > \(\frac{50}{100}\)= \(\frac{1}{2}\)
Vậy S > \(\frac{1}{2}\)
\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
Ta có \(\frac{1}{51}>\frac{1}{100}\)
\(\frac{1}{52}>\frac{1}{100}\)
...
\(\frac{1}{99}>\frac{1}{100}\)
\(\Rightarrow\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)
( có 50 phân số)
\(\Rightarrow S>50.\frac{1}{100}\)
\(\Rightarrow S>\frac{1}{2}\)
Vậy...
Lời giải:
$C=1+5+5^2+5^4+.....+5^{98}+5^{100}$
$25C=5^2C=5^2+5^3+5^4+5^6+....+5^{100}+5^{102}$
$25C-C=(5^3+5^{102})-(5+1)$
$24C=5^{102}-119$
$C=\frac{5^{102}-119}{24}$
\(=1\frac{364}{729}\)\(=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}=1+\frac{243}{729}+\frac{81}{729}+\frac{27}{729}+\frac{9}{729}+\frac{3}{729}+\frac{1}{729}=1\frac{ }{ }\)
\(F=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(F=\frac{1}{9}\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)\)
\(F=\frac{1}{9}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)
\(F=\frac{1}{9}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(F=\frac{1}{9}\left(1-\frac{1}{11}\right)\)
\(F=\frac{1}{9}.\frac{10}{11}=\frac{10}{99}\)