K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2019

Đặt: \(a+\frac{1}{a}=x\inℕ^∗\)

\(b+\frac{1}{b}=y\inℕ^∗\)

\(c+\frac{1}{c}=z\inℕ^∗\)

Em xem lại đề bài nhé! Nếu đề thế này thì rất là không có ý nghĩa.

28 tháng 11 2019

Dạ là tìm 3 số hữu tỉ dương a,b,c ạ e xin lỗi e quên mất ạ

8 tháng 3 2018

Ta có công thức:  \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}=\frac{1}{k+1}+\frac{a-r}{b\left(k-1\right)}\)với k là thương của b cho a, r là số dư của phép chia của b cho a 

=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\Rightarrow\frac{1}{2}+\frac{3}{10}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20}=\frac{4}{5}\) 

Vậy...(làm hơi tắt, chắc bn hiểu dc)

8 tháng 3 2018

ok,

thanks you,

mk sẽ cố hiểu

1 tháng 5 2020

Ta có:

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)

Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)

Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)

Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương

Đặt \(b-c=n^2;a-c=m^2\)

\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương

26 tháng 7

cho mình hỏi tại sao ở TH1: c^2=d^2 lại loại vậy ạ

 

14 tháng 7 2017

mk chưa hc tới bài này nên ko biết làm,thông cảm nha.Nhưng cho mk hỏi hậu tạ cái j z bạn

16 tháng 7 2017

- TRỊNH THỊ THANH HUYỀN Hậu tạ nghĩa là trả ơn sau khi nhận được sự giúp đỡ.