Nếu 14a + 25b chia hết cho 17 thì 5a - 2b chia hết cho 17 với mọi a,b thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
- Do 3a + 11b chia hết cho 17 nên 4.(3a + 11b) chia hết cho 17 hay 12a + 44b chia hết cho 17
-Gọi A = 12a + 44b
B = 5a + 7b
- Muốn chứng minh B chia hết cho 17 thì đi xét tổng A + B , nếu A + B chia hết cho 17 thì B chia hết cho 17 (A đã chia hết cho 17 - theo chứng minh trên)
+Xét tổng A + B = 12a + 44b + 5a + 7b
= 17a + 51b
= 17.(a + 3b) chia hết cho 17
Vậy B chia hết cho 17 hay 5a + 7b chia hết cho 17.
Ta có :
2 . ( 10a + b ) - ( 3a + 2b ) = 20a + 2b - 3a - 2b
= 17a
Vì 17a chia hết cho 17
=> 2 . ( 10a + b ) - ( 3a + 2b ) chia hết cho 17
Vì ( 3a + 2b ) chia hết cho 17
=> 2 . ( 10a + b ) chia hết cho 17
Mà ( 2 ; 17 ) = 1
=> ( 10a + b ) chia hết cho 17
Vậy ( 3a + 2a ) chia hết cho 17 thì ( 10a + b ) chia hết cho 17
Theo đề bài ra, ta có:
\(\left(3a+2b\right)⋮17\)\(\Rightarrow\)\(3a+2b+17a⋮17\)( vì \(17⋮17\))
\(\Rightarrow\)\(10a+2b⋮17\)
\(\Leftrightarrow\)\(2.\left(10a+b\right)⋮17\)
Mà \(\left(2;7\right)=1\)
\(\Rightarrow\)\(10a+b⋮17\)\(\left(đpcm\right)\)
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho!
a. Ta có: chia hết cho 7 nên chia hết cho 7. |
a. Ta có: chia hết cho 7 nên chia hết cho 7.
không chia hết cho 7 nên không chia hết cho 7.
3. .
Ta sẽ đi chứng minh chia hết cho với mọi nguyên.
Thật vậy:
.
Do là 5 số nguyên liên tiếp nên tồn tại ít nhất một số chia hết cho 2, một số chia hết cho 3, một số chia hết cho 5.
Mà nên tích chia hết cho .
Cũng do là ba số nguyên liên tiếp nên tồn tại ít nhất một số chia hết cho 2, một số chia hết cho 3.
Suy ra tích chia hết cho .
Ta có đpcm.
ta có 9x+7y=34x-25x+17y-10y
=34x+17y+(-25x-10x)
=34x+17y-5(5x+2y)
VÌ *34 chia hết cho 17
*17 chia hết cho 17
*(5x+2y) chia hết cho 17
nên nếu x;y thuộc Z thỏa mãn (5x+2y) chia hết cho 17 thì (9x-7y) chia hết cho 17
Lời giải:
$a-11b+3c\vdots 17$
$\Rightarrow 2(a-11b+3c)\vdots 17$
$\Rightarrow 2a-22b+6c\vdots 17$
$\Rightarrow 2a-5b+6c-17b\vdots 17$
$\Rightarrow 2a-5b+6c\vdots 17$ (đpcm)