Cho a, b không âm
CMR: \(\frac{a+b}{2}>=\sqrt{ab}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^3+2\sqrt{a^3}+\sqrt{b^3}}{3\sqrt{a}\left(\sqrt{a^3}+\sqrt{b^3}\right)}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)
\(=\frac{\sqrt{a^3}-3a\sqrt{b}+3\sqrt{a}.b-\sqrt{b^3}+2\sqrt{a^3}+\sqrt{b^3}}{3\sqrt{a}\left(\sqrt{a^3}+\sqrt{b^3}\right)}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)
\(=\frac{3\sqrt{a^3}-3a\sqrt{b}+3b\sqrt{a}}{3\sqrt{a}\left(\sqrt{a^3}+\sqrt{b^3}\right)}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)
\(=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{\sqrt{a}+\sqrt{b}}=0\)
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
\(A=\left(\frac{\sqrt{a}}{\sqrt{ab}-b}+\frac{\sqrt{b}}{\sqrt{ab}-a}\right):\frac{\sqrt{a}+\sqrt{b}}{a\sqrt{b}-b\sqrt{a}}=\left[\frac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}+\frac{\sqrt{b}}{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}\right].\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{a}+\sqrt{b}}=\left[\frac{a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{b}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right].\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\frac{\left(a-b\right)\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{a-b}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\sqrt{a}-\sqrt{b}\)
\(A=\left(\frac{\sqrt{a}}{\sqrt{ab}-b}+\frac{\sqrt{b}}{\sqrt{ab}-a}\right):\frac{\sqrt{a}+\sqrt{b}}{a\sqrt{b}-b\sqrt{a}}\\ =\left(\frac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}+\frac{\sqrt{b}}{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}\right):\frac{\sqrt{a}+\sqrt{b}}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\\ =\left(\frac{\sqrt{a^2}}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{b^2}}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right):\frac{\sqrt{a}+\sqrt{b}}{\sqrt{ab}(\sqrt{a}-\sqrt{b})}\\ =\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}.\frac{\sqrt{ab}(\sqrt{a}-\sqrt{b})}{\sqrt{a}+\sqrt{b}}\\ =\sqrt{a}-\sqrt{b}\)
Bất đẳng thức cần chứng minh tương đương với:
\(\frac{a+b}{\sqrt{ab}}\)+\(\frac{4\sqrt{ab}}{a+b}\)-\(\frac{3ab}{a+b}\)\(\ge\)\(\frac{5}{2}\)(*)
Nhưng mà theo bất đẳng thức AM-GM thì (*) tương đương với
2\(\sqrt{\frac{a+b}{\sqrt{ab}}.\frac{4\sqrt{ab}}{a+b}}\)-\(\frac{3\sqrt{ab}}{2\sqrt{ab}}\)\(\ge\)\(\frac{5}{2}\)
và tương đương với 4-\(\frac{3}{2}\)\(\ge\)\(\frac{5}{2}\)hiển nhiên đúng nên (*) đúng hay ta có đpcm
Vậy \(\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\)\(\ge\)\(\frac{5}{2}\)
dấu đẳng thức xảy ra khi a=b
\(\left(\sqrt{a}+\sqrt{b}\right)^2>=0\)
=>a+b >=2cawn ab
(a+b)/2>=căn ab