Cho tam giác ABC nhọn nội tiếp đường tròn tâm O , các đường cao BD và CE. Chứng minh rằng tứ giác BCDE nội tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4: góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
5: Xét ΔHDE và ΔHCB có
góc HDE=góc HCB
góc DHE=góc CHB
=>ΔHDE đồng dạng với ΔHCB
=>DE/CB=HD/HC
=>DE*HC=HD*BC
Ta có :
Do BD và CE là các đường cao nên
suy ra góc BEC = góc BDC =90 độ
Xét tứ giác BCDE,có:
góc BEC=góc BDC
vậy BCDE là tứ giác nội tiếp(đpcm)
a, xét tứ giác BCDE có:
góc BEC = 90 độ
góc BDC = 90 độ
=>góc BEC=BDC
=>tứ giác BCDE nt
xét tứ giác ADHE có:
góc AEH = 90 độ
góc ADH=90 độ
=>AEH+ADH=180
=>tứ giác ADHE nt
b, vì tứ giác EDCB nt(cmt)
=>góc AED=ACB
xet tam giác AED và ACB có:
góc EAD chung
góc AED=ACB
=>2 tam giác này đồng dạng vs nhau
=>AE/AC=AD/AB
=>AD.AC=AE.AB
C, ta có :góc xAB=ACB
mak góc góc ACB=AED(cmt)
=>góc xAB=AED
=>Ax//ED
a: Xét tứ giác BEDC có
góc BEC=góc BDC=90 độ
=>BEDC là tứ giác nội tiêp
b: góc ABM=góc ACN
=>sđ cung AM=sđ cung AN=2*30=60 độ
=>AM=AN
c: OM=ON
AM=AN
=>OA là trung trực của MN
=>OA vuông góc MN
d: Kẻ đường kính AD
Xét ΔACD vuông tại C và ΔAKB vuông tại K có
góc ADC=góc ABK
=>ΔACD đồng dạng với ΔAKB
=>AC/AK=AD/AB
=>AK*2*R=AB*AC
a: góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
b: Xét ΔHQB và ΔHPC có
góc HQB=góc HPC
góc QHB=góc PHC
=>ΔHQB đồng dạng với ΔHPC
=>HQ/HP=HB/HC
=>HQ*HC=HP*HB
c: kẻ tiếp tuyến Ax
=>góc xAC=góc ABC=góc ADE
=>Ax//ED
=>OA vuông góc DE
3:
Xét ΔGMB và ΔGCA có
góc GMB=góc GCA
góc G chung
=>ΔGMB đồng dạng với ΔGCA
=>GM/GC=GB/GA
=>GM*GA=GB*GC
Xét ΔGEB và ΔGCD có
góc GEB=góc GCD
góc EGB chung
=>ΔGEB đồng dạng với ΔGCD
=>GE/GC=GB/GD
=>GE*GD=GB*GC=GM*GA
=>GE/GA=GM/GD
=>ΔGEM đồng dạng với ΔGAD
=>góc GEM=góc GAD
=>góc DEM+góc DAM=180 độ
=>ADEM nội tiếp
=>góc MDE=góc MAE
Xét tứ giác BCDE có
\(\widehat{BDC}=\widehat{BEC}=90^0\)
hay BCDE là tứ giác nội tiếp